tensorflow实战
修炼之路
主要研究领域包括图像分类、目标检测、OCR、人脸识别等,搞过跨平台的深度学习模型的部署解决方案,设计过分布式的深度学习模型服务架构。
展开
-
pycocotools报TypeError: object of type class numpy.float64 cannot be safely interpreted as an int
错误详情在使用pycocotools的时候报TypeError: object of type <class 'numpy.float64'> cannot be safely interpreted as an integer.错误详细信息如下 File "/home/disk0/zw/workspace/models/research/object_detection/metrics/coco_evaluation.py", line 415, in first_value_fu原创 2020-06-01 20:37:37 · 3447 阅读 · 3 评论 -
WARNING:tensorflow:Entity bound method BatchNormalization.call of
信息描述在使用TensorFlow的时候报一堆的warningWARNING:tensorflow:Entity <bound method BatchNormalization.call of <tensorflow.python.layers.normalization.Ba$chNormalization object at 0x7f3905978cf8>> could not be transformed and will be executed as-is. P转载 2020-05-30 17:29:49 · 4675 阅读 · 4 评论 -
tensorflow2没有slim模块
错误原因在TensorFlow2的版本中,已经移除了contrib模块,所以就没有slim模块,在TensorFlow1的版本中slim的模块导入如下from tensorflow.contrib import slim解决办法我们可以通过安装tf_slim模块来替换contrib中slim,安装tf_slim模块pip install tf_slimimport tf_slim as slim...原创 2020-05-30 13:25:11 · 9853 阅读 · 3 评论 -
TensorFlow报AttributeError: module tensorflow has no attribute io
错误描述在使用TensorFlow的models参考的代码训练目标检测模型时候报AttributeError: module 'tensorflow' has no attribute 'io'错误,错误是由下面的代码导致的with tf.io.gfile.GFile(path, 'r') as fid:python版本:3.6.10TensorFlow版本:1.8.0解决办法因为TensorFlow版本的升级对接口做了调整,将上面的代码改成下面的行with tf.gfile原创 2020-05-27 21:25:47 · 24856 阅读 · 10 评论 -
TensorFlow报ImportError: cannot import name string_int_label_map_pb2
错误描述models仓库地址:https://github.com/tensorflow/models在使用TensorFlow的models来训练目标检测算法,通过object_detection/datasets_tools来在自己的数据集上构建一个tfrecord文件的时候报ImportError: cannot import name 'string_int_label_map_pb2'错误错误定位在label_map_util文件中第27行from object_detect原创 2020-05-26 23:16:29 · 4578 阅读 · 6 评论 -
AttributeError: module 'tensorflow' has no attribute 'log'
查看安装的TensorFlow的版本import tensorflow as tf print(tf.__version__)如果是2.0的版本请修改为更低的版本试试,比如1.4或者以下版本原创 2019-11-25 13:37:52 · 16312 阅读 · 7 评论 -
tensorflow使用GAN生成手写数字(代码介绍)
前言本篇文章主要介绍如何来设置一个GAN网络利用MNIST手写数字图片进行训练来生成手写数字图片,代码主要参考github的实现,在原来的基础上做了一些修改和新增了一些功能。本篇文章主要介绍代码的功能和实现,对于GAN不会做太多的介绍。GAN简介生成对抗式网络(GAN,Generative Adversarial NetWorks):是深度学习中的一种模型,属于无监督学习算法。模型主要包括两...原创 2018-12-26 20:51:53 · 5234 阅读 · 13 评论 -
kaggle猫狗大战之AlexNet(一)
这篇文章主要介绍如何利用AlexNet预训练模型来训练一个猫狗分类器,主要内容包括:项目结构介绍 数据探索 数据的准备 AlexNet模型的构建 模型的训练和性能评估 结果的提交一、项目结构介绍1、相关数据下载地址项目地址:https://github.com/steelOneself/kaggle/tree/master/cat_vs_dog/AlexNet数据下载地...原创 2018-10-15 21:43:20 · 7369 阅读 · 51 评论 -
tensorflow实现自编码网络
一、自编码网络自编码,又称自编码器(autoencoder),也是神经网络的一种,经过训练后能尝试将输入复制到输出。自编码器内部有隐藏层,通过编码和解码来还原输入数据。该网络可以看作由两部分组成:一个函数h=f(x)表示编码器和一个解码器r=g(h)。自编码器是一个3层或大于3层的神经网络,它的作用是将输入样本压缩到隐藏层,然后解压,在输出端还原输入样本。最终输出层神经元数量等于输入层神经...原创 2018-09-01 22:58:17 · 3734 阅读 · 1 评论 -
tensorflow实现inception V3
本文主要通过tensorflow的contrib.slim模块来实现Google Inception V3来减少设计Inception V3的代码量,使用contrib.slim模块便可以通过少量的代码来构建有42层深的Inception V3。一、Inception V3网络结构介绍...原创 2018-06-26 22:58:03 · 13922 阅读 · 6 评论 -
tensorflow实现CIFAR-10图片的分类
本篇文章主要是利用tensorflow来构建卷积神经网络,利用CIFAR-10数据集来实现图片的分类。数据集主要包括10类不同的图片,一共有60000张图片,50000张图片作为训练集,10000张图片作为测试集,每张图片的大小为32×32×3(彩色图片)。通过本篇文章你将可以学习到:1、如何进行数据增强2、权重的正则化3、如何来设计一个卷积神经网络分类器一、数据增强数据增强(Data Augme...原创 2018-06-09 16:18:18 · 9839 阅读 · 1 评论 -
Google Inception Net介绍
一、Inception V1简介Google Inception Net(Inception V1)首次出现是在ILSVRC 2014的比赛中,Google Inception Net以top5的错误率为6.67%获得了第一名,而VGGNet的top5错误率为7.3%。Inception V1的特点就是控制了计算量和参数量,Inception V1只有500万 的参数量,而AlexNet有6000...原创 2018-06-22 22:56:54 · 6511 阅读 · 0 评论 -
使用tensorflow构建一个卷积神经网络
一、卷积神经网络卷积神经网络(Convolutional Neural Network,CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现,主要包括卷积层(convolutional layer)和池化层(pooling layer),主要应用于图像、视频、时间序列信号、音频信号、文本数据等。一般的卷积神经网络都是由多个卷积层组成,每个卷积层主...原创 2018-06-05 22:55:59 · 4984 阅读 · 0 评论 -
tensorflow实现多层感知机
在上一篇文章中,介绍了如何使用tensorflow来构建一个单层的神经网络,在训练集和测试集上的准确率达到了92%。这篇文章主要介绍使用tensorflow构建一个包含隐含层的神经网络,使得模型在...原创 2018-06-05 21:26:58 · 2856 阅读 · 0 评论 -
tensorflow实现AlexNet
AlexNet是Hinton的学生Alex Krizhevsky在2012年提出的深度卷积神经网络,它是LeNet一种更深更宽的版本。在AlexNet上首次应用了几个trick,ReLU、Dropout和LRN。AlexNet包含了6亿3000万个连接,6000万个参数和65万个神经元,有5个卷积层,3个全连接层。在ILSVRC 2012比赛中,AlexNet以top-5的错误率为16.4%的显著...原创 2018-06-11 22:17:15 · 13911 阅读 · 4 评论 -
使用tensorflow构建一个单层的手写数字识别
本篇文章主要介绍使用tensorflow来构建一个单层的神经网络模型,最终模型在训练集和测试集上的准确率可以达到92%,整个过程主要分为六个步骤。1、导入相关函数和模块from tensorflow.examples.tutorials.mnist import input_dataimport tensorflow as tf 2、使用tensorflow下载MNIST数据集整个数据集一共包含...原创 2018-06-04 21:47:47 · 1513 阅读 · 0 评论