自组织映射神经网络SOM---学习小记


  1. 创建函数
  2. 传递函数
  3. 距离函数

  • boxdist函数
功能:该函数为Box距离函数,在给定神经网络某层的神经元的位置后,可利用该函数计算神经元之间的位置,该函数通常用于结构函数的gridtop的神经网络层。
d=boxdist(pos)
ps:神经元位置的N*S维矩阵
d:函数返回值,神经元距离的S*S维矩阵。
原理为d(i,j)=max||Pi-Pj||。其中,d(I,j)表示距离矩阵中的元素;Pi表示位置矩阵中的第i列向量

如:>>pos = rand(3,6);

>>d = boxdist(pos)

d =

         0    0.2734    0.8305    0.8436    0.6733    0.7887
    0.2734         0    0.8600    0.8731    0.7027    0.8182
    0.8305    0.8600         0    0.6864    0.6787    0.1366
    0.8436    0.8731    0.6864         0    0.3278    0.8230
    0.6733    0.7027    0.6787    0.3278         0    0.8153
    0.7887    0.8182    0.1366    0.8230    0.8153         0
位置矩阵(3*6),表示有6个包含3项的列向量(暂理解为在3维空间中),通过boxdist函数,

返回得到距离矩阵d,反映的是每个列向量之间的距离。


  • linkdist函数
连接距离函数。在给定神经元的位置后,该函数可用于计算神经元之间的距离。

d = linkdist(pos)

pos:N*S维的神经元位置矩阵

d:S*S维的距离矩阵

函数的原理为:

....待补充


如:>>pos = rand(3,6);

>>D = linkdist(pos)

D =

     0     1     1     1     2     2
     1     0     1     1     2     1
     1     1     0     1     1     1
     1     1     1     0     1     1
     2     2     1     1     0     1
     2     1     1     1     1     0



其含义如前部分所示。

  • mandist函数

计算曼哈顿距离的距离权函数:

z = mandist(w,p)

df = mandist('deriv')

D = mandist(pos)

各参数的意义参见dist函数。

函数的运算原理为:

d = sum(abs(X-Y))其中X和Y是两个向量

如:W = rand(4,3);

P = rand(3,1);

Z = mandist(W,P)

Z =

    1.2315
    0.6838
    1.7668
    1.1333




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值