- 创建函数
- 传递函数
- 距离函数
- boxdist函数
功能:该函数为Box距离函数,在给定神经网络某层的神经元的位置后,可利用该函数计算神经元之间的位置,该函数通常用于结构函数的gridtop的神经网络层。
d=boxdist(pos)
ps:神经元位置的N*S维矩阵
d:函数返回值,神经元距离的S*S维矩阵。
原理为d(i,j)=max||Pi-Pj||。其中,d(I,j)表示距离矩阵中的元素;Pi表示位置矩阵中的第i列向量
如:>>pos = rand(3,6);
>>d = boxdist(pos)
d =
0 0.2734 0.8305 0.8436 0.6733 0.7887
0.2734 0 0.8600 0.8731 0.7027 0.8182
0.8305 0.8600 0 0.6864 0.6787 0.1366
0.8436 0.8731 0.6864 0 0.3278 0.8230
0.6733 0.7027 0.6787 0.3278 0 0.8153
0.7887 0.8182 0.1366 0.8230 0.8153 0
即位置矩阵(3*6),表示有6个包含3项的列向量(暂理解为在3维空间中),通过boxdist函数,
返回得到距离矩阵d,反映的是每个列向量之间的距离。
- linkdist函数
连接距离函数。在给定神经元的位置后,该函数可用于计算神经元之间的距离。
d = linkdist(pos)
pos:N*S维的神经元位置矩阵
d:S*S维的距离矩阵
函数的原理为:
- 创建函数
- 传递函数
- 距离函数
- boxdist函数
d=boxdist(pos)
ps:神经元位置的N*S维矩阵
d:函数返回值,神经元距离的S*S维矩阵。
如:>>pos = rand(3,6);
>>d = boxdist(pos)
d =
0 0.2734 0.8305 0.8436 0.6733 0.7887
0.2734 0 0.8600 0.8731 0.7027 0.8182
0.8305 0.8600 0 0.6864 0.6787 0.1366
0.8436 0.8731 0.6864 0 0.3278 0.8230
0.6733 0.7027 0.6787 0.3278 0 0.8153
0.7887 0.8182 0.1366 0.8230 0.8153 0
即位置矩阵(3*6),表示有6个包含3项的列向量(暂理解为在3维空间中),通过boxdist函数,
返回得到距离矩阵d,反映的是每个列向量之间的距离。
- linkdist函数
d = linkdist(pos)
pos:N*S维的神经元位置矩阵
d:S*S维的距离矩阵
函数的原理为:
....待补充
如:>>pos = rand(3,6);
>>D = linkdist(pos)
D =
0 1 1 1 2 2
1 0 1 1 2 1
1 1 0 1 1 1
1 1 1 0 1 1
2 2 1 1 0 1
2 1 1 1 1 0
其含义如前部分所示。
- mandist函数
计算曼哈顿距离的距离权函数:
z = mandist(w,p)
df = mandist('deriv')
D = mandist(pos)
各参数的意义参见dist函数。
函数的运算原理为:
d = sum(abs(X-Y))其中X和Y是两个向量
如:W = rand(4,3);
P = rand(3,1);
Z = mandist(W,P)
Z = 1.2315 0.6838 1.7668 1.1333