泰勒公式一句话描述:就是用多项式函数去逼近光滑函数。
先来感受一下:
定理:
设 n 是一个正整数。如果定义在一个包含 a 的区间上的函数 f 在 a 点处 n+1 次可导,那么对于这个区间上的任意 x,都有
其中的多项式称为函数在a 处的泰勒展开式,剩余的 Rn(x) R n ( x ) 是泰勒公式的余项,是 (x−a)n ( x − a ) n 的高阶无穷小。
泰勒公式的定义看起来气势磅礴,高端大气。如果 a=0 的话,就是麦克劳伦公式,即 f(x)=∑Nn=0fn(0)n!xn+Rn(x) f ( x ) = ∑ n = 0 N f n ( 0 ) n ! x n + R n ( x ) ,这个看起来简单一点,我们下面只讨论麦克劳伦公式,可以认为和泰勒公式等价。
1.多项式的函数图像特点
f(x)=∑Nn=0fn(0)n!xn
f
(
x
)
=
∑
n
=
0
N
f
n
(
0
)
n
!
x
n
展开来就是
f(0)+f′(0)x+f′′(0)2!x2+...+fn(0)n!xn,f(0),f′′(0)2!
f
(
0
)
+
f
′
(
0
)
x
+
f
″
(
0
)
2
!
x
2
+
.
.
.
+
f
n
(
0
)
n
!
x
n
,
f
(
0
)
,
f
″
(
0
)
2
!
,这些都是常数,我们暂时不管,先看看其中最基础的组成部分,幂函数有什么特点。
可以看到,幂函数其实只有两种形态,一种是关于 Y 轴对称,一种是关于原点对称,并且指数越大,增长速度越大。
那幂函数组成的多项式函数有什么特点呢?
怎么才能让 x^2 和 x^9 的图像特性能结合起来呢?
我们来动手试试看看系数之间如何压制的:
2.用多项式对 ex e x 进行逼近
ex
e
x
是麦克劳伦展开形式上最简单的函数,有 e 就是这么任性。
ex=1+x+12!x2+...+1n!xn+Rn(x)
e
x
=
1
+
x
+
1
2
!
x
2
+
.
.
.
+
1
n
!
x
n
+
R
n
(
x
)
增加一个
14!x4
1
4
!
x
4
看看
可以看出,
1n!xn
1
n
!
x
n
不断的弯曲着那根多项式形成的铁丝去逼近
ex
e
x
。并且 n 越大,起作用的区域距离0越远。
3.用多项式对 sin(x) 进行逼近
sin(x) 是周期函数,有非常多的弯曲,难以想象可以用多项式进行逼近。
sin(x)=x−13!x3+⋯+(−1)n(2n+1)!x(2n+1)+Rn(x)
s
i
n
(
x
)
=
x
−
1
3
!
x
3
+
⋯
+
(
−
1
)
n
(
2
n
+
1
)
!
x
(
2
n
+
1
)
+
R
n
(
x
)
。
同样的,我们再增加一个
17!x7
1
7
!
x
7
试试。
可以看到
17!x7
1
7
!
x
7
在适当的位置,改变了
x−13!x3+15!x5
x
−
1
3
!
x
3
+
1
5
!
x
5
的弯曲方向,最终让
x−13!x3+15!x5−17!x7
x
−
1
3
!
x
3
+
1
5
!
x
5
−
1
7
!
x
7
更好的逼近了
sin(x)
s
i
n
(
x
)
。
4.泰勒公式与拉格朗日中值定理的关系
拉格朗日中值定理:如果函数 f(x) 满足,在 [a,b] 上连续,在 (a,b) 上可导,那么至少有一点
θ(a<θ<b)
θ
(
a
<
θ
<
b
)
使等式
f′(θ)=f(a)−f(b)a−b
f
′
(
θ
)
=
f
(
a
)
−
f
(
b
)
a
−
b
成立。—-维基百科
数学定义的文字描述总是非常严格、拗口,我们来看下拉格朗日中值定理的几何意义:
这个和泰勒公式有什么关系?泰勒公式有个余项
Rn(x)
R
n
(
x
)
我们一直没有提。
余项即使用泰勒公式估算的误差,即
f(x)−∑n=0Nf(n)(a)n!(x−a)n=Rn(x)
f
(
x
)
−
∑
n
=
0
N
f
(
n
)
(
a
)
n
!
(
x
−
a
)
n
=
R
n
(
x
)
余项的代数式是,
Rn(x)=f(n+1)(θ)(n+1)!(x−a)(n+1)
R
n
(
x
)
=
f
(
n
+
1
)
(
θ
)
(
n
+
1
)
!
(
x
−
a
)
(
n
+
1
)
,其中
a<θ<x
a
<
θ
<
x
。是不是看着有点像了?
当 N=0 的时候,根据泰勒公式有,
f(x)=f(a)+f′(θ)(x−a)
f
(
x
)
=
f
(
a
)
+
f
′
(
θ
)
(
x
−
a
)
,把拉格朗日中值定理中的 b 换成 x ,那么拉格朗日中值定理根本就是 N=0 时的泰勒公式。
结合拉格朗日中值定理,我们来看看 N=0 的时候,泰勒公式的几何意义:
当 N=0 的时候,泰勒公式几何意义很好理解,那么
N=1,2,⋯
N
=
1
,
2
,
⋯
呢?
这个问题我是这么理解的:首先让我们去想象高阶导数的几何意义,一阶是斜率,二阶是曲率,三阶四阶已经没有明显的几何意义了,或许,高阶导数的几何意义不是在三维空间里面呈现的,穿过更高维的时空才能俯视它的含义。现在的我们只是通过代数证明,发现了高维投射到我们平面上的秘密。
还可以这么来思考泰勒公式,泰勒公式让我们可以通过一个点来窥视整个函数的发展,为什么呢?
因为点的发展趋势蕴含在导数之中,而导数的发展趋势蕴含在二阶导数之中……四不四很有道理啊?
5.泰勒公式是怎么推导的?
很多同学看到这段时,可能有点看不懂,我在牛顿插值的几何解释是怎么样的? - 知乎,这个回答里尝试重新作答了。
根据“以直代曲、化整为零”的数学思想,产生了泰勒公式。
如上图,把曲线等分为 n 份,分别为
a1,a2,⋯,an,
a
1
,
a
2
,
⋯
,
a
n
,
令
a1=a,a2=a+Δx,⋯,an=a+(n−1)Δx
a
1
=
a
,
a
2
=
a
+
Δ
x
,
⋯
,
a
n
=
a
+
(
n
−
1
)
Δ
x
。我们可以推出(
Δ2,Δ3
Δ
2
,
Δ
3
可以认为是二阶、三阶微分,其准确的数学用语是差分,和微分相比,一个是有限量,一个是极限量):
f(a2)=f(a+Δx)=f(a)+Δf(x)
f
(
a
2
)
=
f
(
a
+
Δ
x
)
=
f
(
a
)
+
Δ
f
(
x
)
f(a3)=f(a+2Δx)=f(a+Δx)+Δf(a+Δx)=f(a)+2Δf(x)+Δ2f(x)
f
(
a
3
)
=
f
(
a
+
2
Δ
x
)
=
f
(
a
+
Δ
x
)
+
Δ
f
(
a
+
Δ
x
)
=
f
(
a
)
+
2
Δ
f
(
x
)
+
Δ
2
f
(
x
)
f(a4)=f(a+3Δx)=f(a)+4Δf(x)+6Δ2f(x)+4Δ3f(x)+Δ4f(x)
f
(
a
4
)
=
f
(
a
+
3
Δ
x
)
=
f
(
a
)
+
4
Δ
f
(
x
)
+
6
Δ
2
f
(
x
)
+
4
Δ
3
f
(
x
)
+
Δ
4
f
(
x
)
也就是说,f(x)全部可以由 a 和 \Delta x 决定,这个就是泰勒公式提出的基本思想。据此的思想,加上极限 \Delta x \to 0 ,就可以推出泰勒公式。
6.泰勒公式的用处
多项式这种函数是我们可以亲近的函数,它们很开放、很坦白,心里想什么就说什么,比如
f(x)=2−3x
f
(
x
)
=
2
−
3
x
,这个多项式会告诉我们想问的任何消息,甚至更多,譬如,我们问:“嘿,老兄,你在4那点的值是多少?”这时 f(x) 会毫不犹豫的回答:“你把4代进来,就会得到
2−3×4=−10
2
−
3
×
4
=
−
10
,顺便告诉你,我最近长了奇怪的疹子,痒的要命,还好这两天症状减轻了…”。但是 ln(x) 阴暗、多疑,要是问它:“嗨,你在3的值是多少啊?”你得到的答案可能是:“你要干什么?为什么打听别人的私事?你以为凭着你那点加减乘除的三脚猫功夫就可以查出我的底细?况且我在3的值是多少,干你什么事!”—-《微积分之倚天宝剑》
泰勒公式最直接的一个应用就是用于计算,计算机一般都是把 sin(x) 进行泰勒展开进行计算的。
泰勒公式还可以把问题简化,比如计算,
limx→0sin(x)x
lim
x
→
0
s
i
n
(
x
)
x
,代入 sin(x) 的泰勒展开有:
limx→0sin(x)x=limx→0x+o(x3)x=1
lim
x
→
0
s
i
n
(
x
)
x
=
lim
x
→
0
x
+
o
(
x
3
)
x
=
1
,其中其中
o(x3)
o
(
x
3
)
是泰勒公式里面的余项,是高阶无穷小,
limx→0o(x3)=0
lim
x
→
0
o
(
x
3
)
=
0
。
泰勒公式求高:
以上内容转自:
https://www.zhihu.com/question/21149770/answer/111173412