大数据挖掘与分析
文章平均质量分 93
天涯幺妹
这个作者很懒,什么都没留下…
展开
-
大数据技术Spark文件存取解析
在Spark系统中,提供了多种文件格式的读取和保存的API。数据的读取和保存可以从两个维度来区分:文件格式和文件系统。原创 2024-10-27 11:11:32 · 275 阅读 · 0 评论 -
大数据Hadoop之MapReduce高级编程
Hadoop提供了很多内置的数据类型,常用的是Java基本类型的Writable封装。成绩管理系统应用非常广泛,但基本上都是基于关系型数据库进行实现。若现在已有学生各科成绩汇总的文本文件,如何对这些数据进行分析?创建数据库,将大量的数据手动添加到表中再通过SQL语句分析?显然这是不明智的选择。此时可以选择文本分析工具或MapReduce程序实现分析功能。原创 2024-10-26 11:35:52 · 820 阅读 · 0 评论 -
大数据引擎Hadoop之HDFS API编程技巧
Hadoop提供了多种访问接口API,以解决不同开发环境编程访问HDFS文件系统的问题,包括:C API、HFTP接口、REST API以及Java API等。原创 2024-10-26 11:07:36 · 581 阅读 · 0 评论 -
大数据应用开发实时统计订单信息
要求每30min统计一次新增营业额、新增订单数、新增有效订单数,因为有一些订单是免费的(如cost字段为空),所以这些订单是无效订单。此外,需要统计总订单数、有效订单总数、总营业额。我们使用Kafka与Spark Streaming实现订单信息的实时统计。原创 2024-10-09 11:17:54 · 1114 阅读 · 0 评论 -
人工智能实战用折线图解读产业GDP发展态势
我们拿到一大堆关于GDP的数据,如何能将这些数据以图形的方式展现出来,例如将这些数据值随时间(或另一个变量)而变化的关系在图上绘制出来,那将是一件非常令人惬意的事情,能直观地帮助我们更深入洞悉数据后面可能隐藏的一些有用的信息。折线图正是这样一种工具,它能较好地展现均匀分布的一系列数据,来显示数据的变化趋势。原创 2024-09-28 17:13:57 · 532 阅读 · 0 评论 -
人工智能开发实时语音识别系统应用
数字0-9是我们生活中常见的10个基数,在医院、银行、饭店等场所,由于资源和人手的受限,人们必须排队等候服务,叫号系统应运而生。有必要借助于机器来实现英语数字的识别。下面,我们利用语音特征提取技术和卷积神经网络模型,对数字语音进行识别以解决上述问题。原创 2024-09-27 22:23:41 · 1299 阅读 · 0 评论 -
人工智能开发实战照片智能搜索功能实现
人工智能AI无时不在我们身边,能否借助AI的人脸识别技术来帮助我自动整理出我想要的照片,实现照片的智能搜索呢?答案无疑是肯定的。下面,我们就利用人脸识别技术和OpenCV工具,对相册中的照片进行自动挑选以解决上述问题。原创 2024-09-26 12:29:02 · 691 阅读 · 0 评论 -
人工智能开发实战推荐算法应用解析
推荐系统能为你提供个性化的智能服务,是基于以下事实认知:人们倾向于喜欢那些与自己喜欢的东西相似的其它物品,或倾向于与自己趣味相投的人有相似的爱好,或者不同的客户群体有固定的购物习惯等。原创 2024-09-21 21:46:10 · 1033 阅读 · 0 评论 -
人工智能开发实战辅助诊断应用解析
随着医疗AI在医疗领域的攻城掠地,如今已经开启了新纪元的智慧医疗科技,借助“人工智能大脑”,AI辅助诊疗新时代正在到来。利用AI探索生命科技,是当前人工智能医学的一大热点。基于大数据、云计算、机器学习和深度学习的人工智能,正在弥补人类的能力短板,成为医生的得力助手。原创 2024-09-21 16:54:06 · 954 阅读 · 0 评论 -
人工智能开发实战常用分类算法归纳与解析
人工智能分类算法在人工智能领域中扮演着至关重要的角色,它们通过学习数据的特征和模式,将输入数据映射到相应的类别,从而实现数据的分类和识别。原创 2024-09-18 21:03:20 · 912 阅读 · 0 评论 -
人工智能开发实战线性回归预测医疗费用
线性回归模型已被证明能用于解决一个或多个变量引起另一个变量变化的问题,那我们就可以试图从投保人的特征变量入手,通过机器学习提供的线性回归模型,来寻找到一个医疗费用与保险人特征有关的函数表达式,从而利用所求得的回归方程或回归模型进行预测和控制。原创 2024-09-15 10:17:30 · 1090 阅读 · 0 评论 -
人工智能开发实战matplotlib库应用基础
matplotlib是一个Python 2D绘图库,它以多种硬拷贝格式和跨平台的交互式环境生成高质量的图形。matplotlib 尝试使容易的事情变得更容易,使困难的事情变得可能。原创 2024-09-13 18:38:21 · 1272 阅读 · 0 评论 -
人工智能开发实战k‐均值聚类电商用户分类
本项目将基于该场景采用聚类分析算法将电商用户进行合理群分,并基于不同类别用户群体特征采用不同的营销措施来保持用户活跃度。原创 2024-09-09 23:38:22 · 944 阅读 · 0 评论 -
人工智能开发实战线性回归预测房屋价格
线性回归(Linear Regression)是一种通过拟合自变量xi与因变量y之间最佳线性关系,来预测目标变量的方法,在人工智能应用非常广泛。原创 2024-09-07 22:10:47 · 1177 阅读 · 0 评论 -
人工智能开发实战之计算机视觉处理
计算机视觉是深度学习最先取得突破性成就的领域。作为一个科学学科,计算机视觉研究相关的理论和技术,试图建立能够从图像或者多维数据中获取‘信息’的人工智能系统。原创 2024-09-05 17:42:18 · 810 阅读 · 0 评论 -
人工智能开发实战之自然语言NLP处理
自然语言处理(NLP)是人工智能领域中的一个重要分支,它研究如何实现人与计算机之间用自然语言进行有效通信的各种理论和方法。NLP是计算机科学、人工智能和语言学交叉的领域,旨在使计算机能够理解和生成人类语言,从而实现人机交互的自然化和智能化。原创 2024-09-04 11:09:29 · 702 阅读 · 0 评论 -
人工智能开发实战之OpenCV图像处理
OpenCV 是一款跨平台的计算机视觉和机器学习软件平台,在计算机视觉领域广泛使用,是目前人工智能应用中的重要基础平台。原创 2024-09-03 12:03:51 · 763 阅读 · 0 评论 -
人工智能开发实战MNIST数据集及神经网络完全解析
人工智能大模型应用为时下最热门的话题,在这里,我们从几个关键的技术点MNIST数据集,人工神经网络等原理分析与应用出发,帮助小伙伴们快速进入应用实战状态。原创 2024-08-31 11:43:10 · 1613 阅读 · 0 评论 -
人工智能开发实战TensorFlow高级应用解析
TFLearn是一个基于TensorFlow构建的模块化的、透明的深度学习库,它可以更快、更方便地搭建一个深度的网络。Keras是一个由Python编写的开源人工神经网络库,可以作为TensorFlow、Microsoft-CNTK和Theano的后端。现在Keras已经被添加到TensorFlow中,成为了TensorFlow的默认框架。相对于TensorFlow,Keras更加适合快速实验和开始一个项目。原创 2024-08-30 17:07:23 · 2254 阅读 · 0 评论 -
人工智能开发实战机器学习算法解析
机器学习算法是人工智能领域的重要组成部分,它们通过从数据中学习并自动改进,而无需进行显式的编程。机器学习算法可以分为多种类型,包括监督学习、无监督学习、半监督学习、迁移学习和强化学习。每种类型都有其特定的应用场景和优势。原创 2024-08-29 14:47:26 · 4429 阅读 · 0 评论 -
人工智能开发实战TensorFlow机器学习框架解析
TensorFlow是由Google开发的用于机器学习和人工智能的开源软件库,特别适用于深度神经网络的训练和推理。 它是一个基于数据流图的符号数学系统,设计用于解决复杂的数学问题,并广泛应用于机器学习、深度学习等领域。原创 2024-08-28 13:40:06 · 1488 阅读 · 0 评论 -
Python Web开发Django框架视图应用指导
Python的Django框架中,视图用于处理HTTP请求,并返回响应数据,实现前后端的交互。原创 2024-08-21 09:19:55 · 1118 阅读 · 0 评论 -
Python Web开发Django框架模板应用指导
Django的模板文件是一个文本文件,这个文件可以是任何类型的文本(如HTML、CSV等),但通常保存为HTML类型,最后渲染为前端网页效果,类似于Java中的模板引擎Thymeleaf。Django项目通过模板引擎解释模板文件,一个Django项目中可以配置一个或多个模板引擎。Django有内置的模板引擎,也支持广泛使用的Python模板引擎Jinja2。原创 2024-08-20 14:23:55 · 779 阅读 · 0 评论 -
Python Web开发Django框架路由系统指导
通过URL(Uniform Resource Locator,统一资源定位符)可以访问互联网上的资源——用户通过浏览器向指定URL发起请求,Web服务器接收请求并返回用户请求的资源,因此可以将URL视为用户与服务器之间交互的桥梁。作为一个优秀的Web框架,Django提供了配置URL的路由系统,通过该路由系统,开发人员可以设计出简洁、优雅的URL。原创 2024-08-20 12:35:26 · 1006 阅读 · 0 评论 -
Python应用开发之MySQL数据库管理指导
MySQL是一个开源的关系型数据库管理系统(RDBMS),它使用结构化查询语言(SQL)进行数据库管理。由于其体积小、速度快、成本低以及广泛的应用,MySQL成为了世界上最受欢迎的开放源代码数据库之一。这里使用 mysql-connector-pytho将mysql与python进行连接,实现mysql数据库的基本操作。原创 2024-08-19 16:20:05 · 1214 阅读 · 0 评论 -
Python Web开发Django框架应用指导
Django是使用Python语言编写的一个开源Web应用框架,它遵循MTV架构、鼓励快速开发,是当前较为流行的一种Web开发框架。原创 2024-08-18 11:32:40 · 1354 阅读 · 0 评论 -
Python应用NumPy与Pandas及Matplotlib完全解析
Python是一个高层次的结合了解释性、编译性、互动性和面向对象的脚本语言。1991年,第一个Python编译器诞生。它是由C语言实现的,且能够调用C语言的库文件。从其诞生,Python就已经具有了类、函数、异常处理、包含表和词典的核心数据类型,以及以模块为基础的拓展系统。python应用非常广泛:Web开发、数据分析、人工智能、数学处理、科学计算及自动化运维等各个方面。原创 2024-08-17 13:02:52 · 1097 阅读 · 0 评论 -
人工智能技术AI之Python开发环境搭建
Python是一个高层次的结合了解释性、编译性、互动性和面向对象的脚本语言。广泛应用于爬虫技术、大数据分析与人工智能应用开发等。原创 2024-08-08 17:50:11 · 822 阅读 · 0 评论 -
大数据与AI人工智能数学基础之线性代数应用
大数据与AI人工智能技术都要以数学为基础的学科, 无论是其算法原理还是计算求解, 都是建立在数学知识的基础上, 例如: 微积分、线性代数、概率统计、最优化等。因此, 在学习前, 必须首先掌握一定的数学知识,在这里我们来学习一下线性代数相关内容吧!原创 2024-07-31 15:23:51 · 388 阅读 · 0 评论 -
大数据与AI人工智能数学基础之概率论与数理统计应用
大数据与AI人工智能技术都要以数学为基础的学科, 无论是其算法原理还是计算求解, 都是建立在数学知识的基础上, 例如: 微积分、线性代数、概率统计、最优化等。概率论与数理统计(简称概率统计)与生活实践和科学试验有着紧密的联系,是许多新发展的前沿学科(如控制论、信息论、可靠性理论、人工智能等)的基础,因此学好这一学科是十分重要的。原创 2024-07-31 12:08:56 · 1027 阅读 · 0 评论 -
消息队列RabbitMQ在Windows中安装与配置完全解析
RabbitMQ是一个由Erlang语言开发的基于AMQP协议的开源中间件。RabbitMQ最初起源于金融系统,用于在分布式系统中存储转发消息,在易用性、扩展性、高可用性等方面表现不俗。原创 2024-07-23 14:38:42 · 4452 阅读 · 0 评论 -
Elasticsearch全文搜索引擎的安装与配置完全解析
Elasticsearch 简称es,是一个分布式、高扩展、高实时的搜索与数据分析引擎。它能很方便地赋予大量数据具有搜索、分析和探索的能力,在大数据分析与人工智AI中有非常广泛的应用。原创 2024-07-22 13:04:30 · 1118 阅读 · 0 评论 -
大数据应用之Spark环境安装与配置完全解析
Spark由Apache公司开源,与Hadoop配合使用获得更高性能与易用性,是专为大规模数据处理而设计的快速通用的计算引擎 ,现在形成一个高速发展的广泛生态系统。Spark具有速度快、易用性、通用性及生态丰富的特点,可用它来完成各种各样的运算,包括 SQL 查询、文本处理、机器学习等。原创 2024-07-21 20:58:36 · 1125 阅读 · 0 评论 -
大数据应用之Hadoop环境安装与配置完全解析
Hadoop是apache公司开源的一个能够让用户轻松架构和使用的分布式计算平台。用户可以轻松地在Hadoop上开发和运行处理海量数据的应用程序。它具有高可靠、高扩展、高效与高容错等特点,是大数据分析与应用的必备技术。原创 2024-07-21 19:41:19 · 1581 阅读 · 0 评论