[NLP论文阅读] Discourse-Based Objectives for Fast Unsupervised Sentence Representation Learning

论文原文:Discourse-Based Objectives for Fast Unsupervised Sentence Representation Learning

引言

这篇文章的想法很有意思,为了学习到更好的句子表示,作者没有去设计新的模型来学习句子表示,而是设计了3个预训练目标来预训练已有的句子编码器(Sentence encoder),当模型经过这3个预训练后在针对目标任务进行训练。就好比,你要练一门神功,你最好要先练好基本功。作者发现模型学习到的句子表示虽然没有显著得优于当前最新结果,但是训练时间大大减少了。

预训练任务

  1. Binary Ordering of Sentences
    你的模型是用来学习句子表示的是吧?那么你的模型是不是也要能判断两句相邻句子的前后顺序?这就是第一个任务,训练模型能判断两句句子的顺序,作者称之为ORDER。
    句子顺序
    这个表展示了数据集中的4个句子对,如果两句句子排序正确,那么Label就是Y,否则就是N。当然我们不难发现,对于list关系,两个句子是并列的&#
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值