图像金字塔

一、为什么要使用图像金字塔?

在现实世界中,物体在不同尺度下,有着不同的结构。这就表明,我们如果从不同的尺度去观察同一个物体,会得出不一样的结果。比如,观察一棵树的适当尺度应该是“米”,而观察一片叶子可能需要更细粒度的尺度才能得出较好的结果。 当计算机系统要对一个未知的场景进行分析时,并不能够提前预知要用什么样的尺度来对图像信息中的兴趣结构(interesting structures)进行描述才是最合适的。因此,唯一可行的方案就是将多个不同尺度的描述都考虑进来,以便捕获未知的尺度变化。

举个例子,我们要在一幅图像中查找某个目标,比如脸,我们不知道目标在图像中的尺寸大小。这种情况下,我们需要创建创建一组图像,这些图像是具有不同分辨率的原始图像。如果我们把最大的图像放在底部,最小的放在顶部,看起来像一座金字塔,故而得名图像金字塔。(即同一图像的不同分辨率的子图集合)。

二、 金字塔类型:高斯和拉普拉斯

1、高斯金字塔(Gaussian pyramid):

用来向下采样,高斯金字塔的顶部是通过将底部图像中的连续的行和列去除得到的。要从金字塔第i层生成第i+1层(我们表示第i+1层为G_i+1),我们先要用高斯核对G_i进行卷积,然后删除所有偶数行和偶数列。这样操作一次一个MxN 的图像就变成了一个M/2xN/2 的图像。所以这幅图像的面积就变为原来图像面积的四分之一。这被称为Octave。连续进行这样的操作我们就会得到一个分辨率不断下降的图像金字塔。函数 cv2.pyrDown() 从一个高分辨率大尺寸的图像向上构建一个金子塔(尺寸变小,分辨率降低)

img = cv2.imread('messi5.jpg')
lower_reso = cv2.pyrDown(higher_reso)

下图是一个四层的图像金字塔

 

2、拉普拉斯金字塔(Laplacianpyramid)
: 用来从金字塔低层图像重建上层未采样图像,在数字图像处理中也即是预测残差,可以对图像进行最大程度的还原,配合高斯金字塔一起使用。先将图像在每个方向放大为原来的两倍,新增的行和列用0填充,再使用先前同样的内核与放大后的图像卷积,获得新增像素的近似值。

OpenCV代码

higher_reso2 = cv2.pyrUp(lower_reso)

 函数 cv2.pyrUp() 从一个低分辨率小尺寸的图像向下构建一个金子塔(尺寸变大,但分辨率不会增加)
拉普拉金字塔的图像看起来就像边界图,其中很多像素都是 0。他们经常被用在图像压缩中。下图就是一个三层的拉普拉斯金字塔:

拉普拉斯金字塔可以有高斯金字塔计算得来,公式如下:

 

 

三、实例

图像金字塔的一个应用是图像融合。例如,在图像缝合中,你需要将两幅图叠在一起,但是由于连接区域图像像素的不连续性,整幅图的效果看起来会很差。这时图像金字塔就可以排上用场了,他可以帮你实现无缝连接。这里的一个经典案例就是将两个水果融合成一个,看看下图也许你就明白我在讲什么了。

实现上述效果的步骤如下:
1. 读入两幅图像,苹果和橘子
2. 构建苹果和橘子的高斯金字塔(6 层)
3. 根据高斯金字塔计算拉普拉斯金字塔
4. 在拉普拉斯的每一层进行图像融合(苹果的左边与橘子的右边融合)
5. 根据融合后的图像金字塔重建原始图像。

import cv2
import numpy as np,sys
A = cv2.imread('apple.jpg')
B = cv2.imread('orange.jpg')

# generate Gaussian pyramid for A
G = A.copy()
gpA = [G]
for i in xrange(6):
G = cv2.pyrDown(G)
gpA.append(G)

# generate Gaussian pyramid for B
G = B.copy()
gpB = [G]
for i in xrange(6):
G = cv2.pyrDown(G)
gpB.append(G)

# generate Laplacian Pyramid for A
lpA = [gpA[5]]
for i in xrange(5,0,-1):
GE = cv2.pyrUp(gpA[i])
L = cv2.subtract(gpA[i-1],GE)
lpA.append(L)

# generate Laplacian Pyramid for B
lpB = [gpB[5]]
for i in xrange(5,0,-1):
GE = cv2.pyrUp(gpB[i])
L = cv2.subtract(gpB[i-1],GE)
lpB.append(L)

# Now add left and right halves of images in each
#numpy.hstack(tup)

#Take a sequence of arrays and stack them horizon
#to make a single array.

LS = []
for la,lb in zip(lpA,lpB):
rows,cols,dpt = la.shape
ls = np.hstack((la[:,0:cols/2], lb[:,cols/2:]
LS.append(ls)

# now reconstruct
ls_ = LS[0]
for i in xrange(1,6):
ls_ = cv2.pyrUp(ls_)
ls_ = cv2.add(ls_, LS[i])

# image with direct connecting each half
real = np.hstack((A[:,:cols/2],B[:,cols/2:]))
cv2.imwrite('Pyramid_blending2.jpg',ls_)
cv2.imwrite('Direct_blending.jpg',real)


 四、总结

关于图像金字塔非常重要的一个应用就是实现图像分割。图像分割的话,先要建立一个图像金字塔,然后在G_i和G_i+1的像素直接依照对应的关系,建立起”父与子“关系。而快速初始分割可以先在金字塔高层的低分辨率图像上完成,然后逐层对分割加以优化。

参考:

https://blog.csdn.net/zhu_hongji/article/details/81536820

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值