推荐算法
文章平均质量分 90
主要以推荐系统算法与个人新得为主
蜜桃上的小叮当
最近复活了,会更新一些东西,谢谢大家支持
展开
-
推荐算法中经典排序算法GBDT+LR
逻辑回归(LR,Logistic Regression)是一种传统机器学习分类模型,也是一种比较重要的非线性回归模型,其本质上是在线性回归模型的基础上,加了一个Sigmoid函数(也就是非线性映射),由于其简单、高效、易于并行计算的特点,在工业界受到了广泛的应用。虽然说逻辑回归可以实现回归预测,但是在推荐算法中,我们都将其看作是线性模型并把它应用在分类任务中。使用LR模型主要是用于分类任务,通常情况下也都是二分类任务,一般在推荐系统的业务中,会使用LR作为Baseline模型快速上线。原创 2024-03-10 00:09:16 · 1168 阅读 · 0 评论 -
推荐系统经典模型YouTubeDNN代码
上一篇讲到过YouTubeDNN论文部分内容,但是没有代码部分。最近网上教学视频里看到一段关于YouTubeDNN召回算法的代码,现在我分享一下给大家参考看一下,并附上一些我对代码的理解。代码中提到的离散特征和变长特征该如何选择?答:首先我们要理解一下什么事离散特征,什么是变长特征?离散特征:是指具有有限取值或离散类别的特征,例如性别、国家、城市等(用户画像信息)。对于离散特征,可以使用embedding来将其映射到低维连续向量空间中。这使得模型能够学习离散特征之间的相关性和交互关系。原创 2024-02-29 22:37:33 · 1141 阅读 · 0 评论 -
对于协同过滤算法我自己的一些总结和看法
协同过滤是个比较直观且解释性较强的一类模型算法,但是没有较强的泛化能力,也就是两两物品的相似性无法推广到其他商品相似度计算中,这样就会存在一个很严重的问题,就是对于近期具有头部热门商品,容易跟大量物品产生相似性,而尾部的稀疏向量就无法与其他物品产生相似性计算而减少对其的推荐。总结一下来说,推荐结果头部效应比较明显,但处理稀疏向量能力弱。对于解决此类问题,我们可以引用矩阵分解技术来增强模型的泛化能力,在协同过滤共现矩阵的基础上,添加用户与物品之间稠密的隐向量,从而挖掘隐含特征,来解决稀疏性问题。原创 2024-02-05 18:11:46 · 929 阅读 · 0 评论 -
基于内容的推荐算法Word2Vec(物品冷启动)
文章目录Word2Vec原理简介Word2Vec算法模型CBOWContinuous Skip-gramWord2Vec相关代码实现之前和大家聊过物品画像与用户画像,现在接着说一下实现物品冷启动的一些方法:利用Word2Vec可以计算电影所有标签词之间的关系程度,可用于计算电影之间的相似度。Word2Vec原理简介word2vec是google在2013年开源的一个NLP(Natural Language Processing自然语言处理) 工具,它的特点是将所有的词向量化,这样词与词之间就可原创 2021-07-15 00:03:05 · 1084 阅读 · 6 评论 -
基于内容的推荐算法物品画像、用户画像
文章目录内容推荐的介绍基于内容的推荐实现步骤基于内容推荐流程基于电影推荐的相关算法及代码实现物品画像基于TF-IDF的特征提取技术物品画像代码实现倒排索引原理及代码实现用户画像原理及代码实现内容推荐的介绍基于内容的推荐方法是非常直接的,它以物品的内容描述信息为依据来做出的推荐,本质上是基于对物品和用户自身的特征或属性的直接分析和计算。例如,假设已知电影A是一部动作片,而恰巧我们得知某个用户特别喜欢看动作片,那么我们基于这样的已知信息,就可以将电影A推荐给该用户。基于内容的推荐实现步骤画像构建:原创 2021-07-14 16:52:46 · 720 阅读 · 0 评论 -
基于矩阵分解的协同过滤推荐算法原理及代码
文章目录矩阵分解的发展史Traditional SVDFunk SVD (LFM )Bias SVDSVD++基于矩阵分解的CF算法——LFMLFM原理解析矩阵分解的发展史Traditional SVD通常SVD矩阵分解指的是SVD(奇异值)分解技术,在这我们姑且将其命名为Traditional SVD。其公式如下图所示:Traditional SVD分解的形式为3个矩阵相乘,中间矩阵为奇异值矩阵。如果想运用SVD分解的话,有一个前提是要求矩阵是稠密的,即矩阵里的元素要非空,否则就不能运用原创 2021-07-12 23:12:50 · 2191 阅读 · 5 评论 -
基于回归模型的协同过滤推荐算法原理及代码
文章目录BaselineBaseline 基线准则Baseline目标Baseline算法思想算法解析随机梯度下降优化交替最小二乘法优化BaselineBaseline 基线准则如果我们将评分看作是一个连续的值而不是离散的值,那么就可以借助线性回归思想来预测目标用户对某物品的评分。其中一种实现策略被称为Baseline(基准预测)。Baseline设计思想:有些用户的评分普遍高于其他用户或普遍低于其他用户。比如有些用户随便好说话都是给5分好评,而有些人就比较苛刻,评分都不超过3分;一些物品的评分普原创 2021-07-09 16:53:56 · 484 阅读 · 0 评论 -
基于协同过滤的电影评分推荐案例及相关代码
文章目录案例介绍数据集加载相似度计算备注User-Based CF 预测评分评分预测公式实现评分预测predict实现预测全部评分predict_all添加过滤规则预测根据预测评分为指定用户进行TOP-N推荐Item-Based CF 预测评分评分预测公式案例介绍我们要通过两种最基本的实现方案:User-Based CF和Item-Based CF,利用真实的数据来进行案例的分析演练。数据这边我们采用了MovieLens中的数据集,因为实验环境,对于数据量的要求不能特别高,所以我们可以下载ml-lat原创 2021-07-07 15:53:04 · 2745 阅读 · 1 评论 -
协同过滤算法之基于模型的矩阵分解原理
文章目录基于模型的方法基于模型的算法分类图模型矩阵分解模型基于模型的方法在user-item矩阵比较稀疏的时候,往往不适用于皮尔逊相关系数等方法计算相似度,此时我们可以使用基于模型的方法来解决user-item矩阵稀疏的问题。基于模型的思想:通过机器学习算法,在数据中找出模式,并将用户与物品间的互动方式模式化。基于模型的协同过滤方式是构建协同过滤更高级的算法。近邻模型存在的问题:物品之间存在相关性, 信息量并不随着向量维度增加而线性增加。矩阵元素稀疏, 计算结果不稳定,增减一个向量维度,原创 2021-07-01 14:29:56 · 632 阅读 · 0 评论 -
协同过滤算法之连续评分通过皮尔逊相关系数计算相似度原理及代码实现
文章目录相关算法介绍余弦相似度皮尔逊(Pearson)相关系数使用协同过滤推荐算法对用户进行评分预测协同过滤推荐算法数据集关于用户-物品评分矩阵代码及实现如何计算评分预测?总结相关算法介绍余弦相似度度量的是两个向量之间的夹角, 用夹角的余弦值来度量相似的情况两个向量的夹角为0是,余弦值为1, 当夹角为90度是余弦值为0,为180度是余弦值为-1余弦相似度在度量文本相似度, 用户相似度 物品相似度的时候较为常用余弦相似度的特点, 与向量长度无关,余弦相似度计算要对向量长度归一化, 两个向量只要方原创 2021-06-30 00:33:32 · 3064 阅读 · 2 评论 -
协同过滤算法之通过Jaccard相似度计算推荐结果原理及代码实现
文章目录Jaccard相似度介绍Jaccard相似度计算推荐结果代码及实现基本介绍Jaccard相似度计算代码协同过滤推荐代码实现Jaccard相似度介绍两个集合的交集元素个数在并集中所占的比例, 非常适用于布尔向量表示分子是两个布尔向量做点积计算, 得到的就是交集元素的个数分母是两个布尔向量做或运算, 再求元素和杰卡德相似度适用于隐式反馈数据(0,1布尔值),主要应用于是否收藏,是否点击,是否加购物车。简单地来说就是交集/并集J(A,B)=|A∩B|/|A∪B|Jaccard相似度计算原创 2021-06-29 17:34:42 · 3918 阅读 · 3 评论