推荐系统经典模型YouTubeDNN代码

前言

  • 上一篇讲到过YouTubeDNN论文部分内容,但是没有代码部分。最近网上教学视频里看到一段关于YouTubeDNN召回算法的代码,现在我分享一下给大家参考看一下,并附上一些我对代码的理解。

数据预处理部分

  • 首先我们需要对数据集进行预处理,数据集格式如下图所示
    在这里插入图片描述
  • 根据YouTubeDNN论文,输入的数据是用户的信息、视频的ID序列、用户搜索的特征和一些地理信息等其他信息。到了基于文章内容的信息流产品中,就变成了用户 ID、年龄、性别、城市、阅读的时间戳再加上视频的ID。我们把这些内容可以组合成YouTubeDNN需要的内容,最后处理成需要的Embedding。
from tqdm import tqdm
import numpy as np
import random
from tensorflow.python.keras.preprocessing.sequence import pad_sequences

def gen_data_set(data, negsample=0):
    # 根据timestamp排序数据,并替换
    data.sort_values("timestamp", inplace=True)
    #根据item_id进行去重
    item_ids = data['item_id'].unique()

    # 构建训练与测试list
    train_set = list()
    test_set = list()

    for reviewrID, hist in tqdm(data.groupby('user_id')):
        # 正样本列表
        pos_list = hist['item_id'].tolist()
        rating_list = hist['rating'].tolist()

        if negsample > 0:
            # 候选集中去掉用户看过的item项目
            candidate_set = list(set(item_ids) - set(pos_list))
            # 随机选择负采样样本
            neg_list = np.random.choice(candidate_set, size=len(pos_list) * negsample, replace=True)
        for i in range(1, len(pos_list)):
            if i != len(pos_list) - 1:
                # 训练集和测试集划分
                train_set.append((reviewrID, hist[::-1], pos_list[i], 1, len(hist[:: -1]), rating_list[i]))
                for negi in range(negsample):
                    train_set.append((reviewrID, hist[::-1], neg_list[i * negsample + negi], 0, len(hist[::-1])))
                else:
                    test_set.append((reviewrID, hist[::-1], pos_list[i], 1, len(hist[::-1]), rating_list[i]))

            # 打乱数据集
            random.shuffle(train_set)
            random.shuffle(test_set)
            return train_set, test_set


def gen_model_input(train_set, user_profile, seq_max_len):
    # 用户id
    train_uid = np.array([line[0] for line in train_set])
    # 历史交互序列
    train_seq = [line[1] for line in train_set]
    # 物品id
    train_iid = np.array([line[2] for line in train_set])
    # 正负样本标签
    train_label = np.array([line[3] for line in train_set])
    # 历史交互序列长度
    train_hist_len = np.array([line[4] for line in train_set])

    train_seq_pad = pad_sequences(train_seq, maxlen=seq_max_len, padding='post', truncating='post', value=0 )
    train_model_input = {"user_id": train_uid, "item_id": train_iid, "hist_item_id": train_seq_pad, "hist_len": train_hist_len}
    for key in {"gender", "age", "city"}:
        train_model_input[key] = user_profile.loc[train_model_input['user_id']][key].values

    return train_model_input, train_label
  • 代码解释:
    • **gen_data_set() **主要作用是接收数据集(data)和一个负采样(negsample)参数,返回一个训练集列表(trainset)和一个测试集列表(testset)。具体流程是先通过timetamp列对数据进行排序,根据item_id进行去重;然后根据user_id分组形成正负样本(正样本为购买过的,负样本为没有购买过的),对于negsample大于0,我们就要进行负采样,也就是随机选择一些没有购买过的商品为负样本,然后将它们保存到训练集中;最后,将正负样本数据以及其他信息(如历史交互序列、用户 ID 和历史交互序列的长度)保存到训练集列表和测试集列表中。
    • gen_model_input() 主要作用就是接收一个训练集列表、用户画像信息和序列最大长度参数,返回训练模型的输入和标签。首先将训练集列表拆分成 5 个列表(train_uid train_seq train_iid train_label train_hist_len);然后使用pad_sequences() 函数对历史交互序列进行填充处理,将其变成长度相同的序列。最后,将用户画像信息(gender age city)加入到训练模型的关键字中,返回训练模型的输入和标签。
    • pad_sequences():pad_sequences()这个函数是来自于TensorFlow中数据预处理的一种方法,主要就是数据预填充。在TensorFlow2.8版本之前可以通过from tensorflow.python.keras.preprocessing.sequence import pad_sequences调用,后期版本则是在keras.utils里,这里建议使用低版本tesorflow2,具体版本信息请参考链接

模型训练预测部分

  • 进入模型训练阶段,我们需要先了解一下,代码里我们所使用的一些包和函数介绍
    • sklearn.preprocessing.LabelEncoder:对数据进行特征编码
    • deepctr.feature_column.SparseFeat, VarLenSparseFeat:用户构建用户和物品特征输入。
    • deepmatch:用于构建和训练推荐模型
    • faiss:高效向量相似性搜索库
    • models.recall.preprocess.gen_data_set, gen_model_input:数据预处理部分(自建)
import pandas as pd
from sklearn.preprocessing import LabelEncoder
from models.recall.preprocess import gen_data_set, gen_model_input
from deepctr.feature_column import SparseFeat, VarLenSparseFeat
from tensorflow.python.keras import backend as K
from tensorflow.python.keras.models import Model
import tensorflow as tf
from deepmatch.models import *
from deepmatch.utils import recall_N
from deepmatch.utils import sampledsoftmaxloss
import numpy as np
from tqdm import tqdm
import faiss

class YouTubeModel(object):
    def __init__(self, embedding_dim=32):
        self.SEQ_LEN = 50
        self.embedding_dim = embedding_dim
        self.user_feature_columns = None
        self.item_feature_columns = None

    def training_set_construct(self):
        # 数据加载
        data = pd.read_csv('../../data/read_history.csv')
        # 负采样个数
        negsample = 0
        # 特征编码
        features = ["user_id", "item_id", "gender", "age", "city"]
        features_max_idx={}
        for feature in features:
            lbe = LabelEncoder()
            data[feature] = lbe.fit_transform(data[feature]) + 1
            features_max_idx[feature] = data[feature].max() + 1

        # 抽取用户、物品特征(并去重)
        user_info = data[["user_id", "gender", "age", "city"]].drop_duplicates('user_id')
        item_info = data[["item_id"]].drop_duplicates('item_id')

        # 构建输入数据
        train_set, test_set = gen_data_set(data, negsample)
        # 转化模型输入
        train_model_input, train_label = gen_model_input(train_set, user_info, self.SEQ_LEN)
        test_model_input, test_label = gen_model_input(test_set, user_info, self.SEQ_LEN)

        # 用户端特征输入
        self.user_feature_columns = [SparseFeat('user_id', features_max_idx['user_id'], 16),
                                     SparseFeat('gender', features_max_idx['gender'], 16),
                                     SparseFeat('age', features_max_idx['age'], 16),
                                     SparseFeat('city', features_max_idx['city'], 16),
                                     VarLenSparseFeat(SparseFeat('hist_item_id', features_max_idx['item_id'],
                                                                 self.embedding_dim, embedding_name='item_id'),
                                                      self.SEQ_LEN, 'mean', 'hist_len')
                                     ]
        # 物品端特征输入
        self.item_feature_columns = [SparseFeat('item_id', features_max_idx['item_id'], self.embedding_dim)]

        return train_model_input, train_label, test_model_input, test_label, train_set, test_set, user_info, item_info

    def training_model(self, train_model_input, train_label):
        K.set_learning_phase(True)
        if tf.__version__ >= '2.0.0':
            tf.compat.v1.disable_eager_execution()
        # 定义模型
        model = YoutubeDNN(self.user_feature_columns, self.item_feature_columns, num_sampled=100,
                           user_dnn_hidden_units=(128, 64, self.embedding_dim))
        # 使用adam优化,损失函数使用softmax+cross_entropy
        model.compile(optimizer="adam", loss=sampledsoftmaxloss)
        # 训练并保存训练过程中的数据
        model.fit(train_model_input, train_label, batch_size=512, epochs=20, verbose=1, validation_split=0.0,)
        return model

    # 提取用户和物品的embedding layer
    def extract_embedding_layer(self, model, test_model_input, item_info):
        all_item_model_input = {"item_id": item_info['item_id'].values, }
        # 获取用户、item的embedding_layer
        user_embedding_model = Model(inputs=model.user_input, outputs=model.user_embedding)
        item_embedding_model = Model(inputs=model.item_input, outputs=model.item_embedding)
        user_embs = user_embedding_model.predict(test_model_input, batch_size=2 ** 12)
        item_embs = item_embedding_model.predict(all_item_model_input, batch_size=2 ** 12)
        print(user_embs.shape)
        print(item_embs.shape)
        return user_embs, item_embs

    # 计算召回率和命中率
    def eval(self, user_embs, item_embs, test_model_input, item_info, test_set):
        test_true_label = {line[0]: line[2] for line in test_set}
        index = faiss.IndexFlatIP(self.embedding_dim)
        index.add(item_embs)
        D, I = index.search(np.ascontiguousarray(user_embs), 50)
        s = []
        hit = 0

        # 统计预测结果
        for i, uid in tqdm(enumerate(test_model_input['user_id'])):
            try:
                pred = [item_info['item_id'].value[x] for x in I[i]]
                recall_score = recall_N(test_true_label[uid], pred, N=50)
                s.append(recall_score)
                if test_true_label[uid] in pred:
                    hit += 1
            except:
                print(i)

        # 计算召回率和命中率
        recall = np.mean(s)
        hit_rate = hit / len(test_model_input['user_id'])

        return recall, hit_rate

    def scheduler(self):
        # 构建训练集、测试集
        train_model_input, train_label, test_model_input, test_label, \
        train_set, test_set, user_info, item_info = self.training_set_construct()
        self.training_model(train_model_input, train_label)

        # 获取用户、item的layer
        user_embs, item_embs = self.extract_embedding_layer(model, test_model_input, item_info)
        # 评估模型
        recall, hit_rate = self.eval(user_embs, item_embs, test_model_input, item_info, test_set)
        print(recall, hit_rate)

if __name__ == '__main__':
    model = YouTubeModel()
    model.scheduler()
  • 代码解释:
    • training_set_construct:加载数据集,特征编码,数据集预处理,使用deepctr库中的SparseFeat(离散), VarLenSparseFeat(变长)实现用户物品的特征输入。
    • training_model:YoutubeDNN构建训练模型,compile编译训练模型,fit模型训练。
    • extract_embedding_layer:提取用户和物品的Embedding Layer。
    • eval:评估模型计算召回率和命中率,使用faiss中的faiss.IndexFlatIP(余弦距离搜索并非余弦相似度),统计预测结果,计算召回率为recall_score的平均值;命中率则是集中次数hit与test_model_input的总数。
    • scheduler:串联整个召回代码的函数,负责调用。

总结与问答

  1. 代码中提到的离散特征和变长特征该如何选择?
  • 答:首先我们要理解一下什么事离散特征,什么是变长特征?
    • 离散特征:是指具有有限取值或离散类别的特征,例如性别、国家、城市等(用户画像信息)。对于离散特征,可以使用embedding来将其映射到低维连续向量空间中。这使得模型能够学习离散特征之间的相关性和交互关系。通常情况下,离散特征需要经过编码(例如one-hot multi-hot)并与其他特征一起输入到模型中。
    • 变长特征:是指具有可变长度的特征,例如用户的历史行为序列或商品的标签列表。对于变长特征,可以使用循环神经网络(RNN)或Transformer等模型来建模。这些模型可以处理可变长度的序列,并捕捉序列中的时序关系和上下文信息。
    • 所以对于多特征输入,通常需要混合使用。
  • 21
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,以下是一些常见的机器学习模型Python 代码示例: 1. 线性回归模型: ```python from sklearn.linear_model import LinearRegression from sklearn.datasets import load_boston # 导入数据集 boston = load_boston() X = boston.data y = boston.target # 创建线性回归模型对象 model = LinearRegression() # 训练模型 model.fit(X, y) # 预测结果 y_pred = model.predict(X) ``` 2. 决策树模型: ```python from sklearn.tree import DecisionTreeClassifier from sklearn.datasets import load_iris # 导入数据集 iris = load_iris() X = iris.data y = iris.target # 创建决策树模型对象 model = DecisionTreeClassifier() # 训练模型 model.fit(X, y) # 预测结果 y_pred = model.predict(X) ``` 3. 支持向量机模型: ```python from sklearn.svm import SVC from sklearn.datasets import load_iris # 导入数据集 iris = load_iris() X = iris.data y = iris.target # 创建支持向量机模型对象 model = SVC() # 训练模型 model.fit(X, y) # 预测结果 y_pred = model.predict(X) ``` 4. KNN 模型: ```python from sklearn.neighbors import KNeighborsClassifier from sklearn.datasets import load_iris # 导入数据集 iris = load_iris() X = iris.data y = iris.target # 创建 KNN 模型对象 model = KNeighborsClassifier() # 训练模型 model.fit(X, y) # 预测结果 y_pred = model.predict(X) ``` 以上仅仅是一些常见的模型示例,您可以根据自己的需求选择合适的模型进行使用。同时,这些示例代码仅仅是基础示例,如果您需要更加复杂的模型,需要对代码进行进一步的修改和优化。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值