Super Repository

Papers:

  • NLP
  • DRL4NLP

    • https://github.com/ganeshjawahar/drl4nlp.scratchpad
      +++Policy Gradients
      buck_arxiv17: Ask the Right Questions: Active Question Reformulation with Reinforcement Learning [arXiv]
      dhingra_acl17: Towards End-to-End Reinforcement Learning of Dialogue Agents for Information Access [arXiv] [code]
      paulus_arxiv17: A Deep Reinforced Model for Abstractive Summarization [arXiv]
      nogueira_arxiv17: Task-Oriented Query Reformulation with Reinforcement Learning [arXiv] [code]
      li_iclr17: Dialog Learning with Human-in-the-loop [arXiv] [code]
      li_iclr17_2: Learning through dialogue interactions by asking questions [arXiv] [code]
      yogatama_iclr17: Learning to Compose Words into Sentences with Reinforcement Learning [arXiv] 
      dinu_nips16w: Reinforcement Learning for Transition-Based Mention Detection [arXiv]
      clark_emnlp16: Deep Reinforcement Learning for Mention-Ranking Coreference models [arXiv] [code]
      +++Value Function
      narasimhan_emnlp16: Improving Information Extraction by Acquiring External Evidence with Reinforcement Learning [arXiv] [code]
      +++Misc
      bordes_iclr17: Learning End-to-End Goal-Oriented Dialog [arXiv]
      weston_nips16: Dialog-based Language Learning [arXiv] [code]
      nogueira_nips16: End-to-End Goal-Driven Web Navigation [arXiv] [code]
  • Playing Atari with Deep Reinforcement Learning

  • Deep Reinforcement Learning with a Natural Language Action Space
  • Hinton 2006 Deep Belief Network
    • list:
      • A fast learning algorithm for deep belief nets. Neural Computation
      • Greedy Layer-Wise Training of Deep Networks
      • Efficient Learning of Sparse Representations with an Energy-Based Model
    • key point:
      • unsup learn for pre train
      • train by layers
      • sup learn for tuning weight between layers

Office sites:

Videos :


Github Projects:



RL

  • 【Keras+OpenAI增强学习实践:Actor-Critic模型】《Reinforcement Learning w/ Keras + OpenAI: Actor-Critic Models》by Yash Patel O网页链接 pdf:O网页链接 ​​​​
  • 《Keras+OpenAI强化学习实践:深度Q网络》via:机器之心 O教程 | Keras+OpenAI强化学习实践:深度Q网络
  • 《A Tour of Gotchas When Implementing Deep Q Networks with Keras and OpenAi Gym》by Scott Rome O网页链接
  • 【层次增强学习算法】《Learning a Hierarchy | OpenAI》 O网页链接 ref:《Meta Learning Shared Hierarchies》(2017) GitHub: https ://github .com/openai/mlsh
  • 《OpenAI实习生提出分层强化学习新算法》via:机器之心
    • +
  • Q-Learning月球着陆控制“QLearning in OpenAI Lunar Lander”
    • GitHub: https:\//github.com\/FitMachineLearning/FitML/
  • 强化学习入门 第一讲 MDP
  • 强化学习入门及其实现代码
    + http://www.jianshu.com/p/165607eaa4f9
  • Course
    • 如2015年David Silver的经典课程Teaching ,
    • 2017年加州大学伯克利分校Levine, Finn, Schulman的课程 CS 294 Deep Reinforcement Learning, Spring 2017
    • 卡内基梅隆大学的2017 春季课程Deep RL and Control 。
  • 【转载】近似动态规划与强化学习入门步骤
  • Awesome Reinforcement Learning
  • http://www.jianshu.com/p/165607eaa4f9
  • keras-rl

Other Resources:


Corpus:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值