推荐系统中的同现矩阵问题

本文介绍了在研究Hadoop大数据推荐系统时遇到的同现矩阵概念。同现矩阵在协同过滤算法中至关重要,通过分析用户观看电影的数据,详细阐述了如何建立同现矩阵,并给出具体步骤。此外,还提及了用户评分矩阵的构建。
摘要由CSDN通过智能技术生成

最近在研究Hadoop大数据方面的知识,正巧看到了推荐系统,其中里面有个同现矩阵很是让我蒙圈,查了很多blog之后,写下来与大家分享。


1.建立同现矩阵的过程

在协同过滤算法中同现矩阵的建立是极其关键的一部,原始数据如下:

1,101,5.0
1,102,3.0
1,103,2.5
2,101,2.0
2,102,2.5
2,103,5.0
2,104,2.0
3,101,2.0
3,104,4.0
3,105,4.5
3,107,5.0
4,101,5.0
4,103,3.0
4,104,4.5
4,106,4.0
5,101,4.0
5,102,3.0
5,103,2.0
5,104,4.0
5,105,3.5
5,106,4.0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值