如何建立物品的同现矩阵

在协同过滤算法中同现矩阵的建立是极其关键的一部,而在大多数的博客文章中大多都没有详细说明矩阵的建立过程。在此详细说明一下:

原始数据如下所示:

1,101,5.0
1,102,3.0
1,103,2.5
2,101,2.0
2,102,2.5
2,103,5.0
2,104,2.0
3,101,2.0
3,104,4.0
3,105,4.5
3,107,5.0
4,101,5.0
4,103,3.0
4,104,4.5
4,106,4.0
5,101,4.0
5,102,3.0
5,103,2.0
5,104,4.0
5,105,3.5
5,106,4.0
对这些数据建立的同现矩阵如下:
      [101] [102] [103] [104] [105] [106] [107]
[101]   5     3     4     4     2     2     1
[102]   3     3     3     2     1     1     0
[103]   4     3     4     3     1     2     0
[104]   4     2     3     4     2     2     1
[105]   2     1     1     2     2     1     1
[106]   2     1     2     2     1     2     0
[107]   1     0     0     1     1     0     1

建立过程解释:
1.针对用户 1 对电影101 102 103 进行了评分,那么会在上述的矩阵如下位置写 1 :
(101,101)(101,102)(101,103)
(102,101)(102,102)(102,103)
(103,101)(103,102)(103,103)
即对101,102,103进行组合产生3*3个位置点,在对应的位置写1就行。
针对所有的用户进行上述操作,然后将所有的结果相加,最后就可以得到同现矩阵。





### 使用MapReduce实现矩阵预处理 #### Map阶段 在MapReduce框架下,为了执行矩阵运算前的预处理工作,在映射(Map)阶段的任务主要是读取原始数据并将其转换成适合后续计算的形式。对于矩阵而言,这意味着要将每一项记录解析为特定格式以便于识别其位置以及对应的数值。 例如,当涉及到同现矩阵与评分矩阵相乘的操作时,可以先通过Map函数把每一个用户对物品(比如电影)的评价转化为形如`<userId,itemId,value>`这样的三元组形式[^1]。这一步骤不仅限定了参与运算的具体元素,还便于后续按照指定规则分配到不同的Reducer中去处理。 ```python def map_function(key, value): user_id, item_id, rating = value.split(',') yield ((user_id, item_id), float(rating)) ``` #### Reduce阶段 到了归约(Reduce)部分,则是对来自Mapper的结果进一步加工。这里的关键在于如何有效地聚合具有相同键的数据条目,并完成必要的数学操作来构建最终用于推荐系统的输入矩阵。 具体来说,在本场景下的Reduce逻辑应该能够接收由多个Mapper发送过来关于同一用户-项目组合的信息片段,然后累加这些分量得到完整的交互强度表示——即所谓的“同现度”。之后再依据此结果与其他已知偏好得分相结合,形成可供下一步分析使用的结构化数组。 ```python def reduce_function(key, values): total_rating = sum(values) yield key, total_rating ``` 上述过程描述了一个简化版的基于MapReduce模式来进行矩阵准备工作的流程。实际应用当中可能还需要考虑更多细节问题,诸如稀疏性管理、分布式存储优化等方面的内容。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值