信息抽取:关键词自动标注与自动摘要

本文介绍了信息抽取中的关键词自动标注和自动摘要。关键词标注涉及关键词分配和提取,其中TF-IDF和TextRank算法是常用方法。TF-IDF通过词频和逆文档频率计算词的重要性,而TextRank基于共现关系进行关键词选择。自动摘要主要采用抽取式方法,利用TextRank等算法计算句子相似度,选取关键句。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、关键词自动标注

1、关键词

关键词是指能够反映文本语料主题的词语或短语,是快速了解文档内容、把握主题的重要方式。

2、概述

关键词自动标注大概可以分为两大类,一为关键词分配,另一个为关键词提取。
关键词分配是从一个预先构建好的受控词表中推荐若干个词或者短语分配给文档作为关键词。
关键词提取是从文档内容中寻找并推荐关键词,而没有指定的词库。

3、关键词提取

关键词提取一般分为两个步骤,一是生成关键词候选表,二是采用算法选择关键词。

(1)生成关键词候选表

1)去除停用词
2)只提取指定词性的词,如,名词、形容词、动词等
3)其他规则筛选等

(2)算法选用

现有的算法根据是否依赖外部知识库,大致可以分为两大类:一是依赖外部知识库,如:TF-IDF等;二是不依赖外部知识库,如:Textrank等。
此外还有监督方法,将关键词抽取转为序列标注,或基于神经网络的方法等。

4、TF-IDF

TF-IDF是一种统计方法,用以评估一字词对于一个文件集或者或一个语料库中的其中一份文件的重要程度。
字词的重要随着它在文件中出现的次数成正比增加,但同时会随着它在语料库中出现的频率成反比下降。

(1)原理

词频,即TF,指的是某一个给定的词语在该文件中

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值