leetcode skyline problem 天际线问题

   题目综述:假设有N个任意顺序给出的矩形,它们的长宽各不同,但是所有矩形的底部都位于一条水平线上。每个矩形的表示方法为[x,y,height]其中x为左边界,y为右边界,height为高度。我们需要通过给出的矩形表达式画出所有矩形在黑夜中组合出的轮廓。

    我的第一想法是构建一个一维高度图,我们需要创造一组高度值的数组,将每个矩形写入进去。我们不需要考虑将矩形坐标映射(map)到像素数组索引的具体细节,

伪代码如下:

for each rectangle r:
    for each heightmap cell c starting at r.left and ending at r.right:
        c gets the max of r.height and the previous value of c


    从动画里可以看出,由高度图创造出来的天际线不是十分准确。矩阵的边缘与阵列单元格不完全对齐,所以天际线中依然有少量的错误。事实上,唯一能保证无误的方法是使用与最终渲染图解析度完全相同的高度图。这意味着算法的复杂度不仅仅由矩形的数量决定,同时也由输出图的解析度决定。


    当然,除非你使用向量图,否则某些时刻你必须按照输出图像的解析度循环代码,只为了一次画出一个像素的线段。


    那么,如果高度图的最大弱势是在运行程序时需要处理的点的总个数,也许我们应该减少减少处理过程中的点数。既然,天际线是由在某几个点改变高度的水平线段构成的,那么,如果我们找到上述几个x轴上关键点的高度,我们就是可以画出天际线。在每个关键点上,天际线上升或下降并向右画出新的线段直到遇到下一个关键点。


    所以,我们应该怎么找到关键点的高度呢?我们之前已经提出了高度图的方法,那么在此基础上稍稍改进一下吧。这次,我们不采取在经过每个像素点时将矩形高度映射到高度图的办法,我们在每进入一个关键点时将矩形映射到数组中。这样可以避免处理过更多点的问题,因为现在我们是在处理尽可能少的点的情况下画出天机图。


伪代码如下

for each rectangle r:
    for each critical point c:
        if c.x >= r.left && c.x < r.right:

            c.y gets the max of r.height and the previous value of c.y


    看起来不错,现在我们在时间复杂度为O(n^2)的情况下解决了问题。下一步,思考更高效解题的办法。事实上,在画矩形的时候,我们不需要注意每一个关键点,而是注意每个在已给出矩形下方的关键点。


for each rectangle r:
    for each critical point c below r (except the one at r.right):

        c.y gets the max of r.height and the previous value of c.y


    如果能高效地找到每个矩形对应的临界点,就可以找到最优解。我们可以通过分类临界点来轻易的做到这一点。比如,如果我想要找到洋红色矩形的临界点,从洋红矩形左侧开始扫描,一路收集关键点直到我们达到右侧。
很可惜,在最坏的情况下,这种方法不是逐渐改进的,在以下这种情况中,它仍然是 O(n^2)


    让我们试试其他办法,打散我们之前的解法,重新排列试试。如果我们对每个关键点遍历每个矩形呢?


for each critical point c:
    for each rectangle r:
        if c.x >= r.left && c.x < r.right:

            c.y gets the max of r.height and the previous value of c.y


    同样的,我们不需要考虑所有矩形,而是在关键点之上的矩形。


for each critical point c:
    for each rectangle r above c (not including the right edge of rectangles):

        c.y gets the max of r.height and the previous value of c.y


    那么,如何找到关键点之上的所有矩形呢?这需要一个和之前完全不同的策略。
    从左到右扫描天际线的关键点,扫描的同时,追踪当前所经过的所有矩形的集合。每当到达一个关键点的时候,集合进行更新,给关键点分配当前的矩形的集合。扫描结束时,每个关键点处都储存由其上方所有矩形的集合。
    那么,考虑到以上情况,只需要对每个关键点所对应的矩形集合中找到高度最高的那一个就可以了。

    该情况下,复杂度低于O(n^2) ,只要计算每个关键点上最高矩形高度的办法的时间复杂度低于O(n)。那么总时间复杂度就低于O(n^2),通过使用数据结构“堆”,时间复杂度可缩小到 O(logn)。


    我们的最终解法的时间复杂度为O(nlogn)  。
    具体描述如下:首先,找出关键点,然后从左往右扫描关键点。遇到矩形的左端时,将矩形的高度作为“key”加入"堆"中。遇到矩形右端时,将矩形从堆里面移除(这需要有外部指针指向堆)。最后,每次遇到关键点的时候,更新“堆“以后,我们将“堆”最上方的矩形高度赋给此关键点。


翻译来源  https://briangordon.github.io/2014/08/the-skyline-problem.html 

该网站内有动图,结合翻译会更好理解

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值