问题描述
小明开了一家糖果店。他别出心裁:把水果糖包成4颗一包和7颗一包的两种。糖果不能拆包卖。
小朋友来买糖的时候,他就用这两种包装来组合。当然有些糖果数目是无法组合出来的,比如要买 10 颗糖。
你可以用计算机测试一下,在这种包装情况下,最大不能买到的数量是17。大于17的任何数字都可以用4和7组合出来。
本题的要求就是在已知两个包装的数量时,求最大不能组合出的数字。
输入格式
两个正整数,表示每种包装中糖的颗数(都不多于1000)
输出格式
一个正整数,表示最大不能买到的糖数
样例输入1
4 7
样例输出1
17
样例输入2
3 5
样例输出2
7
此题用动态规划,设数目为i,d(i)=1为能买到,则若d(i-4)=1 or d(i-7)=1,d(i)=1;否则,d(i)=0。可以求出任意一个数是否能够买到。又考虑到输入的小值m,连续m次能买到,则以后都能买到。
#include<stdio.h>
int d[100000]={0};
int main(void)
{
int sum=0,m,n,i,j,temp,flag=0;
scanf("%d",&m);
scanf("%d",&n);
int b[2]={m,n};
d[0]=1;
int min=n;
if(m<n)
min=m;
for(i=min;;i++)
{
if(sum>=min) //连续min次都能买到,则以后都能买到
{
break;
}
for(j=0;j<2;j++)
{
if(i>=b[j])
{
if(d[i-b[j]]==1) //第i次可以买到
{
d[i]=1;
temp=i;
sum++;
flag=1;
break;
}
}
}
if(flag==0) //如果中间有一次不能买到,则清空计数次数
{
sum=0;
}
flag=0;
}
printf("%d",temp-min); // 初始值
return 0;
}