蓝桥杯 买不到的数目

问题描述

小明开了一家糖果店。他别出心裁:把水果糖包成4颗一包和7颗一包的两种。糖果不能拆包卖。

小朋友来买糖的时候,他就用这两种包装来组合。当然有些糖果数目是无法组合出来的,比如要买 10 颗糖。

你可以用计算机测试一下,在这种包装情况下,最大不能买到的数量是17。大于17的任何数字都可以用4和7组合出来。

本题的要求就是在已知两个包装的数量时,求最大不能组合出的数字。

输入格式

两个正整数,表示每种包装中糖的颗数(都不多于1000)

输出格式

一个正整数,表示最大不能买到的糖数

样例输入1
4 7
样例输出1
17
样例输入2
3 5
样例输出2

7


此题用动态规划,设数目为i,d(i)=1为能买到,则若d(i-4)=1 or d(i-7)=1,d(i)=1;否则,d(i)=0。可以求出任意一个数是否能够买到。又考虑到输入的小值m,连续m次能买到,则以后都能买到。



#include<stdio.h>

int d[100000]={0};

int main(void)
{
	int sum=0,m,n,i,j,temp,flag=0;
	scanf("%d",&m);
	scanf("%d",&n);
	int b[2]={m,n};
	d[0]=1;
	
	int min=n;
	if(m<n)
		min=m;
		 
	for(i=min;;i++)
	{
		if(sum>=min)  //连续min次都能买到,则以后都能买到 
		{
			break;
		}
		for(j=0;j<2;j++)
		{
			if(i>=b[j])
			{
				if(d[i-b[j]]==1)  //第i次可以买到 
				{
					d[i]=1;
					temp=i;
					sum++;
					flag=1;
					break;
				}
			}		
		}
		if(flag==0)  //如果中间有一次不能买到,则清空计数次数 
		{
			sum=0;
		}
		flag=0;
	}
	
	printf("%d",temp-min);  // 初始值 
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值