📖概念
正则化是一种防止模型过拟合的有效策略,主要分为参数正则化和经验正则化。
正则化符合奥卡姆剃刀定律①,核心思想是降低模型复杂度。
🧩参数正则化
参数正则化主要通过对模型的参数进行约束来实现。
通过在经验风险②上加一个正则化项(也叫惩罚项),实现结构风险③最小化。模型越复杂,正则化项的值越大,二者关系单调递增。
参数正则化一般具有如下形式:
第一项是经验风险,第二项是正则化项,λ≥0为调整两者关系的系数。
🍋范数 norm
范数是向量的投影大小,用于衡量向量的距离。有L1范数、L2范数、L3范数、L4范数等,抽象表示为Lp-norm。公式写作:,代入p值:
L1范数(L1-norm):
,绝对值之和,也称为曼哈顿范数④,它反映了向量在某种“距离”度量下的“大小”或“长度”。
L2范数(L2-norm):