机器学习高频知识点——1. 正则化

📖概念

正则化是一种防止模型过拟合的有效策略,主要分为参数正则化和经验正则化。

正则化符合奥卡姆剃刀定律①,核心思想是降低模型复杂度。

🧩参数正则化

参数正则化主要通过对模型的参数进行约束来实现。

通过在经验风险②上加一个正则化项(也叫惩罚项),实现结构风险③最小化。模型越复杂,正则化项的值越大,二者关系单调递增。

参数正则化一般具有如下形式:

\min_{f\in\digamma}\frac{1}{N}\sum^{N}_{i=1}L(y_i,f(x_i))+\lambda J(f)

第一项是经验风险,第二项是正则化项,λ≥0为调整两者关系的系数。

🍋范数 norm

范数是向量的投影大小,用于衡量向量的距离。有L1范数、L2范数、L3范数、L4范数等,抽象表示为Lp-norm。公式写作:\|x\|_p = (\sum_i\left|x_i\right|^p)^{1/p},代入p值:

L1范数(L1-norm):\|x\|_1 = \sum^{n}_{i=1}\left|x_i\right| = \left|x_1\right|+\left|x_2\right|+...+\left|x_n\right|

,绝对值之和,也称为曼哈顿范数④,它反映了向量在某种“距离”度量下的“大小”或“长度”。

L2范数(L2-norm):

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值