子空间投影

本文介绍了子空间投影的概念,通过二维空间的例子解释了投影矩阵如何计算,并探讨了投影矩阵的性质,如对称性和幂等性。内容进一步扩展到高维空间,说明投影在解决线性方程组无解时的作用,特别是在最小二乘法中的应用。
摘要由CSDN通过智能技术生成


首先我们可以通过上图了解投影在二维空间R2中是怎么回事,现有向量a和b,将b向量投影到a向量,p为b在a上的投影,即p是a上离b最近的点,e=b-p这好比b与p之间的误差,这个误差与a相互垂直,根据垂直关系我们可以列出方程,投影p是a的倍数,所以p=xa,这个x是一个标量,a垂直于e,也就是说 ,将式子作一些变形得到 ,则,投影 ,从投影p的式子可以看出,若b变成了两倍,投影p也会变成2倍,若a变成了两倍,则投影p保持不变。仔细观察投影p的这个式子,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值