cf 8VC Venture Cup 2017 A

题目描述:
A. PolandBall and Hypothesis
time limit per test2 seconds
memory limit per test256 megabytes
inputstandard input
outputstandard output
PolandBall is a young, clever Ball. He is interested in prime numbers. He has stated a following hypothesis: “There exists such a positive integer n that for each positive integer m number n·m + 1 is a prime number”.

Unfortunately, PolandBall is not experienced yet and doesn’t know that his hypothesis is incorrect. Could you prove it wrong? Write a program that finds a counterexample for any n.

Input
The only number in the input is n (1 ≤ n ≤ 1000) — number from the PolandBall’s hypothesis.

Output
Output such m that n·m + 1 is not a prime number. Your answer will be considered correct if you output any suitable m such that 1 ≤ m ≤ 103. It is guaranteed the the answer exists.

Examples
input
3
output
1
input
4
output
2
Note
A prime number (or a prime) is a natural number greater than 1 that has no positive divisors other than 1 and itself.

For the first sample testcase, 3·1 + 1 = 4. We can output 1.

In the second sample testcase, 4·1 + 1 = 5. We cannot output 1 because 5 is prime. However, m = 2 is okay since 4·2 + 1 = 9, which is not a prime number.

大致题意:

输入一个n,找到一个m,使得n*m+1不是素数。

思路分析:

小水题,枚举m即可~

ac代码:

#include<bits/stdc++.h>
using namespace std;
bool ok(int a)
{
    int i;
    for(i=2;i<=sqrt(a);i++)
    {
        if(a%i==0)
            return 1;
    }
    return 0;
}
int main()
{
    int n,m,i,j,k;
    cin>>n;
    for(i=1;i<1000;i++)
    {
        m=n*i+1;
        if(ok(m))
        {
            cout<<i<<endl;
            break;
        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值