最优化复习要点

本文详细介绍了最优化的复习要点,包括线性规划的标准化、单纯形法及其大M法,以及无约束问题的最优性条件和各种下降算法,如最速下降法、牛顿法、共轭梯度法和拟牛顿法。
摘要由CSDN通过智能技术生成

最优化复习要点

1. 线性规划

a. 标准形式

i. 必要时需要引入松弛变量

min  z=cTxs.t. Ax=b     x0

ii. 退化

B1b>0 基变量的取值全为正(右边系数全正)

b. 单纯形法

i. 典式
ii. 单纯形表

初始基可行解

​ 初始单纯形表:

  • 约束条件和右边 不变
  • 目标函数系数取反 c

非基变量入基(选取最合适的 xk )

​ 遵循两个原则:最大、最小

  • 最大:即单纯形表最后一行, maxzjcj
  • 最小:最大对应的列, minb¯yik (必须是正数!!!)

初等行变换

iii. 大M法

2个重点

  • 添加松弛变量后再引入人工变量

  • 单纯形表最后一行: cBB1pjcj

    式中 cB 为初始基变量对应系数,一般含M

    注意 :最后一个数不是0!!!

c. 对偶原理

  • 要先化成GLP一般形式
原问题min 对偶问题max
目标函数系数 右端系数
右端系数 目标函数系数
约束矩阵 系数矩阵转置
i 个约束为 i 个变量 0
i 个约束为 = i 个变量无约束
j 个变量 0 j 个约束为
j 个变量无约束 j
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值