最优化复习要点
1. 线性规划
a. 标准形式
i. 必要时需要引入松弛变量
min z=cTxs.t. Ax=b x⩾0
ii. 退化
B−1b>0 基变量的取值全为正(右边系数全正)
b. 单纯形法
i. 典式
ii. 单纯形表
初始基可行解
初始单纯形表:
- 约束条件和右边 不变
- 目标函数系数取反 −c
非基变量入基(选取最合适的 xk )
遵循两个原则:最大、最小
- 最大:即单纯形表最后一行, maxzj−cj
- 最小:最大对应的列, minb¯yik (必须是正数!!!)
初等行变换
iii. 大M法
2个重点
添加松弛变量后再引入人工变量
单纯形表最后一行: cBB−1pj−cj
式中 cB 为初始基变量对应系数,一般含M
注意 :最后一个数不是0!!!
c. 对偶原理
- 要先化成GLP一般形式
原问题min | 对偶问题max |
---|---|
目标函数系数 | 右端系数 |
右端系数 | 目标函数系数 |
约束矩阵 | 系数矩阵转置 |
第 i 个约束为
|
第 i 个变量
|
第 i 个约束为
|
第 i 个变量无约束 |
第
|
第 j 个约束为
|
第 j 个变量无约束 | 第
|