欢迎使用CSDN-markdown编辑器

最优化复习要点

1. 线性规划

a. 标准形式

i. 必要时需要引入松弛变量

min  z=cTxs.t. Ax=b     x0

ii. 退化

B1b>0 基变量的取值全为正(右边系数全正)

b. 单纯形法

i. 典式
ii. 单纯形表

初始基可行解

​ 初始单纯形表:

  • 约束条件和右边 不变
  • 目标函数系数取反 c

非基变量入基(选取最合适的 xk )

​ 遵循两个原则:最大、最小

  • 最大:即单纯形表最后一行, maxzjcj
  • 最小:最大对应的列, minb¯yik (必须是正数!!!)

初等行变换

iii. 大M法

2个重点

  • 添加松弛变量后再引入人工变量

  • 单纯形表最后一行: cBB1pjcj

    式中 cB 为初始基变量对应系数,一般含M

    注意 :最后一个数不是0!!!

c. 对偶原理

  • 要先化成GLP一般形式
原问题min对偶问题max
目标函数系数右端系数
右端系数目标函数系数
约束矩阵系数矩阵转置
i 个约束为 i 个变量0
i 个约束为= i 个变量无约束
j个变量 0 j 个约束为
j 个变量无约束 j个约束为 =

* 互补松弛性质

(A21x¯1+A22x¯2b2)iw¯2i=0,i,x¯1j(c1AT11w¯1AT21w¯2)j=0,j

利用互补松弛条件验证是否是最优解:

  • 假设是最优解,利用性质获得DGLP满足互补条件的解并验证是否可行,若可行,则为最优解

2. 无约束问题

a. 最优性条件

一阶导(梯度) f(xk)=0

二阶导(Hessian) 2f(x(k)) 正定。

b. 下降算法

i. 最速下降法
ii. 牛顿法

(二级收敛、二次终止性)

  • 已知迭代点 x(k)
  • 求初始梯度、Hessian矩阵,并求 2f(x(k))1
  • 计算 x(k+1)=x(k)2f(x(k))1f(x(k))
iii. 阻尼Newton法
iv. 共轭梯度法
v. 拟Newton法(变尺度法/秩 2 矫正/DFP算法)
  • 拟牛顿条件

    p(k)=Hk+1q(k)

    式中:

    • p(k)=x(k+1)x(k) , q(k)=f(x(k+1)f(x(k)))
    • Hk+12f(x(k))1
    • DFP算法——秩 2 矫正

      • 迭代初点x(k)

      • 计算梯度 gk=f(x(k)) ,置 H1=In (单位矩阵)

      • 选取可行下降方向 d(k)=Hkgk

      • 求步长 λk

      • x(k+1)=x(k)+λkd(k)

        • 最优步长: λk=f(xk)TddkT2f(xk)dk (一般情况为二次函数, H=2f(x) 是固定的,只需要计算一次即可)
        • 可接受步长:$$

        • 检验重复

      3. 约束非线性规划

      a. 可行下降法

      • 初始点 xk

      • 计算 f(xk) ,分解起作用约束与非其作用约束

        [A1A2]and[b1b2]

      • 求解最优步长 dk (判断?)

        minf(xk)Tdks.t.A1dk01dj1

        计算 d^=A2dk b^=b2A2xk

        λmax=min{b^id^i} or 如果 f(x) 是严格凸二次函数,最优步长 λk=min{zk(dk)THdk , λmax}

        计算 λk (带进 f(xk+λkdk) 直接计算,一般都是二次函数)

      • 迭代得 xk+1

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值