TinyGAN: Distilling BigGAN for Conditional Image Generation
知识蒸馏
该论文发表在2020年ACCV。
Abstract
生成对抗网络(GANs)在生成式图像建模中有着重要的应用,但是GANs训练很不稳定,尤其是对于大规模、复杂的数据集。最近的一个工作BigGAN极大程度上提升了在ImageNet上的图像生成质量,但该方法需要一个极大的模型,因此难以部署在资源受限的设备上。为了减少模型大小,这篇文章提出了一个黑盒知识蒸馏框架来压缩GANs,并且是一个稳定且有效的训练过程。具体方法为:将BigGAN作为教师网络,然后训练一个非常小的学生网络来模仿教师网络的功能,在I
原创
2020-12-12 15:16:13 ·
394 阅读 ·
0 评论