- 博客(15)
- 收藏
- 关注
原创 BBN: Bilateral-Branch Network with Cumulative Learning for Long-Tailed Visual Recognition
半监督该论文是一篇CVPR 2020 oral的文章。PDF: BBN: Bilateral-Branch Network with Cumulative Learningfor Long-Tailed Visual Recognitioncode: https://github.com/Megvii-Nanjing/BBN目录MotivationProposed methodCutoutCutMixMotivationSemi-supervised learning 指的是 对于一个数据
2021-01-22 21:49:45 583 1
原创 Component Divide-and-Conquer for Real-World Image Super-Resolution
注意力该论文是一篇ECCV 2020的文章。PDF: Component Divide-and-Conquer for Real-World Image Super-Resolutioncode: https://github.com/xiezw5/Component-Divide-and-Conquer-for-Real-World-Image-Super-Resolution目录MotivationProposed methodConclusionMotivation受Harris角点检测
2021-01-22 21:10:31 1194
原创 Wavelet-Based Dual-Branch Network for Image Demoireing
网络结构设计该论文是一篇ECCV 2020的文章。PDF: Wavelet-Based Dual-Branch Network for Image Demoireing目录MotivationProposed methodLoss functionExperimentsMotivation图像去摩尔纹不仅需要恢复高频图像细节,而且还需要去除频率跨度较大的波纹图案。大多数现有的方法都是在RGB空间中进行处理,难以区分摩尔条纹和真实的图像内容,以及在处理低频摩尔图案中存在困难。图像摩尔纹在频域
2021-01-22 17:19:06 1445
原创 Unpaired Image Super-Resolution using Pseudo-Supervision
文章目录MotivationRelated WorkProposed MethodMotivation在SR中,很多训练数据是通过已经决定好的下采样方法获得的(例如双三次),但是这样构造的数据集并不适用于真实世界的超分。因此,很多新方法被提出,例如:通过非成对的生成对抗网络学习LR和HR之间的映射关系。非成对的生成对抗网络可以分为两种:Direct approach:过程:将源域LR图片输入生成器中,上采样获得HR图片;目标域HR图片输入鉴别器,与生成器G中上采样获得的HR图片做对抗;使生成
2021-01-17 17:19:06 695
原创 DSGAN: Frequency Separation for Real-World Super-Resolution
[pdf][code] github:https://github.com/ManuelFritsche/real-world-srwinner of the AIM Challenge on Real World SR at ICCV 2019Motivation现在的大多数超分模型都是在通过已知下采样核得到的LR图像上进行训练,这样得到的模型对真实带有噪声的LR图像进行超分时,得到的结果往往不理想,如下图所示,用ESRGAN模型对带噪声的图像超分时,得到的结果往往会把噪声放大。Method.
2021-01-14 21:47:02 2120 3
原创 DASR:Unsupervised Real-world Image Super Resolution via Domain-distance Aware Training
[PDF] http://xxx.itp.ac.cn/pdf/2004.01178.pdf[CODE] https://github.com/ShuhangGu/DASRECCV 2020Motivation现在目前的超分方法都是在合成的LR图像上进行训练的,但是合成LR图像(如,双三次下采样)和真实LR图像域不一致,所以导致最终的超分模型在真实LR图像上的结果不理想。目前的主流解决方法是根据给定的真实LR图像数据集,训练一个降质网络,让合成的LR图像的域与真实LR图像保持一致,以此形成LR-H.
2021-01-12 20:24:35 3290 9
原创 Unsupervised Domain Adaptation for Semantic Segmentation by Content Transfer
论文链接:https://arxiv.org/abs/2012.12545此篇论文被IEEE2021接收。文章目录1 Motivation1.1 Domain Gap1.2 Class Imbalance ProblemRelated WorkSelf-trainingMethodUnsupervised Domain AdaptationExperimentsConclusion1 Motivation1.1 Domain Gap这篇论文中,我们将处理无监督域自适应(unsupervised d
2021-01-10 16:07:57 1512
原创 Rethinking Data Augmentation for Image Super-resolution: A Comprehensive Analysis and a New Strategy
[paper]: https://arxiv.org/abs/2004.00448[code]:https://github.com/clovaai/cutblur参考:https://zhuanlan.zhihu.com/p/124223715Motivation数据增强DA方法能够提升网络的表现性能,但是目前大多数的数据增强方法只适用于high-level视觉任务,很少有人研究low-level的数据增强方法。文章对现有的用于SR的数据增强方法进行综合分析,发现过多的丢弃或操作(manipul
2021-01-07 21:19:52 485
原创 Real-world Super-Resolution via Kernel Estimation and Noise Injection
该文是2020 CVPR的一篇文章。在NTIRE 2020 Challenge Real-World Super-Resolution赛道上获胜。pdf:Real-world Super-Resolution via Kernel Estimation and Noise Injectioncode:https://github.com/jixiaozhong/RealSR文章目录MotivationProposed MethodExperiments And ResultsMotivation.
2020-12-21 22:22:20 1832
原创 Semi-supervised semantic segmentation needs strong, varied perturbations
半监督该论文是一篇BMVC 2020的文章。PDF: Semi-supervised semantic segmentation needs strong, varied perturbationscode: https://github.com/Britefury/cutmix-semisup-seg目录MotivationProposed methodCutoutCutMixMotivationSemi-supervised learning 指的是 对于一个数据集,由于标注是费时且麻烦
2020-12-21 16:12:10 1224 1
原创 Correction Filter for Single Image Super-Resolution: Robustifying Off-the-Shelf Deep Super-Resolvers
优化该论文发表在2020年CVPR,oral。PDF: Correction Filter for Single Image Super-Resolution:Robustifying Off-the-Shelf Deep Super-Resolverscode: https://github.com/shadyabh/Correction-Filter目录MotivationRelated workProposed methodMotivationProblem:大部分的图像超分模型都是
2020-12-19 19:30:24 872
原创 Scene Text Image Super-Resolution in the Wild
Scene Text Image Super-Resolution in the Wild ECCV2020上的一篇文章,作者来自商汤研究院、香港大学等。Motivation文章的主要动机有以下几点:现代文本识别技术在清晰本文上已经取得了很好的识别效果,但是在识别低分辨率文本图像时,表现性能急剧下降,主要困难在于光学退化模糊了字符形状,所以作者提到将超分作为文本识别任务的预处理过程非常有必要。目前大多数SISR方法是在特定下采样核(Bicubic)的低分辨率图像上进行训练,不能很好地推广到真实的
2020-12-17 14:34:17 1044
原创 Deep learning for Image Super-resolution:A Survey
该论文发表在2019年IEEE TPAMI。PDF:Deep learning for Image Super-resolution:A Survey文章目录1 Introduction2 Problem Setting And Terminology2.1 Problem Definitions2.2 Datasets for Super-resolution2.3 Image Quality Assessment2.4 Operating Channels2.5 Super-resolution .
2020-12-13 21:08:50 986
原创 TTSR:Learning Texture Transformer Network for Image Super-Resolution
PDF:Learning Texture Transformer Network for Image Super-Resolution代码:github:https://github.com/researchmm/TTSRCVPR2020的一篇文章目录MotivationProposed Method1.Texture TransformerMotivation这是一篇基于参考图像的SR方法(RefSR),除了LR-HR对之外,引入HR参考图像。基于L1损失的SISR方法产生的结果比较模糊,.
2020-12-12 16:44:56 711
原创 TinyGAN: Distilling BigGAN for Conditional Image Generation
知识蒸馏该论文发表在2020年ACCV。Abstract生成对抗网络(GANs)在生成式图像建模中有着重要的应用,但是GANs训练很不稳定,尤其是对于大规模、复杂的数据集。最近的一个工作BigGAN极大程度上提升了在ImageNet上的图像生成质量,但该方法需要一个极大的模型,因此难以部署在资源受限的设备上。为了减少模型大小,这篇文章提出了一个黑盒知识蒸馏框架来压缩GANs,并且是一个稳定且有效的训练过程。具体方法为:将BigGAN作为教师网络,然后训练一个非常小的学生网络来模仿教师网络的功能,在I
2020-12-12 15:16:13 395
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人