Cogs 2221. [SDOI2016 Round1] 数字配对(二分图)

27 篇文章 0 订阅
9 篇文章 0 订阅
  1. [SDOI2016 Round1] 数字配对
    ★★★ 输入文件:menci_pair.in 输出文件:menci_pair.out 简单对比
    时间限制:1 s 内存限制:128 MB
    【题目描述】
    有 n 种数字,第 i 种数字是 ai、有 bi 个,权值是 ci。
    若两个数字 ai、aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数,那么这两个数字可以配对,并获得 ci×cj 的价值。
    一个数字只能参与一次配对,可以不参与配对。
    在获得的价值总和不小于 0 的前提下,求最多进行多少次配对。
    【输入格式】
    第一行一个整数 n。
    第二行 n 个整数 a1、a2、……、an。
    第三行 n 个整数 b1、b2、……、bn。
    第四行 n 个整数 c1、c2、……、cn。
    【输出格式】
    一行一个数,最多进行多少次配对。
    【样例输入】
    3
    2 4 8
    2 200 7
    -1 -2 1
    【样例输出】
    4
    【提示】
    测试点 1 ~ 3:n≤10,ai≤109,bi=1,∣ci∣≤105;
    测试点 4 ~ 5:n≤200,ai≤109,bi≤105,ci=0;
    测试点 6 ~ 10:n≤200,ai≤109,bi≤105,∣ci∣≤105。
    【来源】
    SDOI2016 Round1 Day1
/*
二分图匹配.
建图挺妙的.
把一个数拆开.
若两个数字ai,aj满足,ai是aj的倍数,且ai/aj是一个质数.
这个东西的充要条件是 
①两个数是倍数关系
②两个数质因数分解后指数和相差为1.
也就是说两个数要想配对,那么他必须满足②这个必要条件.
so 我们可以根据这个建图.
根据分解后质数的和的奇偶性分为两类.
我们贪心的跑一个最大费用,所以费用是不严格单调的. 
当当前的一个总费用>=0时我们继续增广.
否则我们就把下界的值加上.
关于下界的处理:
费用>=0且最后一次增广时(排除找不到增广路的情况),
我们发现dis[T]是<0的,我们虽然不能跑x*dis[T]的费用,
但是我们可能能跑sum/-dis[T](下取整)的费用.
(我们也可以把费用取反,然后贪心的跑最小费用.
然后就变成了一个简单的最小(or 最大)费用流最大流问题.
要注意longlong 还有下界的一些东西.
*/
#include<iostream>
#include<cstdio>
#include<cmath>
#include<queue>
#define INF 1e18
#define MAXN 40010
#define LL long long
using namespace std;
int n,m,head[MAXN],a[MAXN],max1,cut=1,tot,S,T,b[MAXN],pre[MAXN];
LL dis[MAXN],ans,sum;
bool pri[MAXN];
queue<int>q;
struct data{int a,b;LL c;}s[MAXN];
struct edge{int u,v,next;LL c,f;}e[MAXN*2];
int read()
{
    int x=0,f=1;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9') x=x*10+ch-48,ch=getchar();
    return x*f;
}
void add(int u,int v,LL c,LL f)
{
    e[++cut].u=u,e[cut].v=v,e[cut].c=c,e[cut].f=f,e[cut].next=head[u],head[u]=cut;
    e[++cut].u=v,e[cut].v=u,e[cut].c=0,e[cut].f=-f,e[cut].next=head[v],head[v]=cut;
}
void slovepri()
{
    for(int i=2;i<=sqrt(max1)+1;i++)
    {
        if(!pri[i])
        {
            a[++tot]=i;
            for(int j=i+i;j<=sqrt(max1);j+=i) pri[j]=true;//sb w.
        }
    }
    return ;
}
bool judge(int x)
{
    for(int i=2;i<=sqrt(x);i++) if(x%i==0) return false;
    return true;
}
int check(int x)
{
    int total=0;
    for(int i=1;i<=tot;i++)
    {
        while(x%a[i]==0) x/=a[i],total++;
        if(x==1) return total;
    }
    return total;
}
void slove()
{
    for(int i=1;i<=n;i++)
    {
        int x=check(s[i].a);
        if(x&1) add(S,i,s[i].b,0);
        else add(i,T,s[i].b,0);
        for(int j=1;j<=n;j++)
        {
            if(j==i) continue;
            if(s[i].a%s[j].a==0&&judge(s[i].a/s[j].a))
            {
                if(x&1) add(i,j,INF,s[i].c*s[j].c);
                else add(j,i,INF,s[i].c*s[j].c);
            }
        }
    }
    return ;
}
bool bfs(int t)
{
    for(int i=S;i<=T;i++) dis[i]=-INF;
    q.push(S);dis[S]=0;b[S]=T;
    while(!q.empty())
    {
        int u=q.front();q.pop();b[u]=0;
        for(int i=head[u];i;i=e[i].next)
        {
            int v=e[i].v;
            if(dis[v]<dis[u]+e[i].f&&e[i].c)
            {
                dis[v]=dis[u]+e[i].f;pre[v]=i;
                if(b[v]!=t) b[v]=t,q.push(v);
            }
        }
    }
    return dis[T]!=-INF;
}
void dinic()
{
    int t=1;
    while(bfs(t))
    {
        int tmp=pre[T];LL x=INF;
        while(tmp) x=min(x,e[tmp].c),tmp=pre[e[tmp].u];
        tmp=pre[T];
        while(tmp)
        {
            e[tmp].c-=x;
            e[tmp^1].c+=x;
            tmp=pre[e[tmp].u];
        }
        if(sum+x*dis[T]>=0)
        {
            sum+=x*dis[T];ans+=x;
        }
        else {ans+=(sum/-dis[T]);return ;}
        t++;
    }
    return ;
}
int main()
{
    freopen("menci_pair.in","r",stdin);
    freopen("menci_pair.out","w",stdout);
    n=read();S=0,T=n+1;
    for(int i=1;i<=n;i++) s[i].a=read(),max1=max(max1,s[i].a);
    for(int i=1;i<=n;i++) s[i].b=read();
    for(int i=1;i<=n;i++) s[i].c=read();
    slovepri();slove();dinic();
    printf("%d",ans);
    return 0;
}
好的,以下是5个关于supermarket_sales - sheet1.csv文件的预处理代码示例: 1. 使用fillna()方法填充缺失值: ```python import pandas as pd sales_df = pd.read_csv('supermarket_sales - sheet1.csv') # 检查缺失值 print(sales_df.info()) # 使用平均值填充缺失值 sales_df['Rating'].fillna(sales_df['Rating'].mean(), inplace=True) # 再次检查缺失值 print(sales_df.info()) ``` 2. 使用drop_duplicates()方法删除重复行: ```python import pandas as pd sales_df = pd.read_csv('supermarket_sales - sheet1.csv') # 删除重复行 sales_df.drop_duplicates(inplace=True) # 检查是否存在重复行 print(sales_df.duplicated().any()) ``` 3. 使用apply()方法创建新的特征: ```python import pandas as pd sales_df = pd.read_csv('supermarket_sales - sheet1.csv') # 创建新的特征:每个订单的平均价格 sales_df['Avg_price'] = sales_df[['Unit price', 'Quantity']].apply(lambda x: x['Unit price'] * x['Quantity'], axis=1) # 查看新的特征 print(sales_df.head()) ``` 4. 使用astype()方法转换数据类型: ```python import pandas as pd sales_df = pd.read_csv('supermarket_sales - sheet1.csv') # 将日期列转换为datetime类型 sales_df['Date'] = pd.to_datetime(sales_df['Date']) # 将Gender列转换为类别类型 sales_df['Gender'] = sales_df['Gender'].astype('category') # 查看转换后的数据类型 print(sales_df.dtypes) ``` 5. 使用MinMaxScaler归一化数据: ```python import pandas as pd from sklearn.preprocessing import MinMaxScaler sales_df = pd.read_csv('supermarket_sales - sheet1.csv') # 将数值列进行归一化 scaler = MinMaxScaler() sales_df[['Unit price', 'Quantity', 'Tax', 'Total', 'cogs', 'gross margin percentage', 'gross income']] = scaler.fit_transform(sales_df[['Unit price', 'Quantity', 'Tax', 'Total', 'cogs', 'gross margin percentage', 'gross income']]) # 查看归一化后的数据 print(sales_df.head()) ``` 希望这些代码段对您有所帮助!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值