算法笔记--复杂度分析(上)

本文介绍了为什么需要进行算法复杂度分析,重点讲解了大O复杂度表示法,并通过实例解析了时间复杂度和空间复杂度的分析方法,包括加法法则和乘法法则。常见的时间复杂度量级如O(1), O(logn), O(n), O(nlogn), O(n^2)等也被提及。" 117912103,11133256,毕业论文项目进度与数据爬取笔记,"['数据挖掘', '爬虫', '知识图谱', '模型训练', '数据处理']
摘要由CSDN通过智能技术生成

为什么需要复杂度分析?

传统方式,如何统计代码执行时间呢?

我们可以将代码跑一遍,通过统计、监控,就能得到算法执行的时间和占比的内存大小。这种方式叫做事后统计法。但是这种统计方式有很大的局限性。

  1. 测试结果非常依赖测试环境
  2. 测试结果受数据规模的影响很大

时间、空间复杂度分析方法,不需要用具体数据来测试,可以粗略的估计算法的执行效率。

大 O 复杂度表示法

int cal(int n) {
    int sum = 0;
    int i = 1;
    for (; i <= n; ++i) {
        sum = sum + i;
    }
    return sum;
}

假设每行代码执行时间都是一样的,为unit_time,在这个基础上,上面的代码总执行时间为 (2n + 2) * unit_time。

所有代码的执行时间 T(n) 与每行代码的执行次数成正比。

转换成公式即为 T(n) = O(f(n)) 这个公式就是大 O 时间复杂度表示法。

  • T(n) 表示代码执行的时间
  • n 表示数据规模的大小
  • f(n) 表示每行代码执行的次数总和。

大 O 时间复杂度并不具体表示代码真正的执行时间,而是表示代码执行时间随数据规模增长的变化趋势,所以也叫做渐进时间复杂度。

时间复杂度:即渐进时间复杂度,表示算法的执行时间与数据规模之间的增长关系

时间复杂度分析

分析方法&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值