为什么需要复杂度分析?
传统方式,如何统计代码执行时间呢?
我们可以将代码跑一遍,通过统计、监控,就能得到算法执行的时间和占比的内存大小。这种方式叫做事后统计法。但是这种统计方式有很大的局限性。
- 测试结果非常依赖测试环境
- 测试结果受数据规模的影响很大
时间、空间复杂度分析方法,不需要用具体数据来测试,可以粗略的估计算法的执行效率。
大 O 复杂度表示法
int cal(int n) {
int sum = 0;
int i = 1;
for (; i <= n; ++i) {
sum = sum + i;
}
return sum;
}
假设每行代码执行时间都是一样的,为unit_time,在这个基础上,上面的代码总执行时间为 (2n + 2) * unit_time。
所有代码的执行时间 T(n) 与每行代码的执行次数成正比。
转换成公式即为 T(n) = O(f(n)) 这个公式就是大 O 时间复杂度表示法。
- T(n) 表示代码执行的时间
- n 表示数据规模的大小
- f(n) 表示每行代码执行的次数总和。
大 O 时间复杂度并不具体表示代码真正的执行时间,而是表示代码执行时间随数据规模增长的变化趋势,所以也叫做渐进时间复杂度。
时间复杂度:即渐进时间复杂度,表示算法的执行时间与数据规模之间的增长关系
时间复杂度分析
分析方法&#