定义
并查集是一种树型的数据结构,用于处理一些不相交集合(Disjoint Sets)的合并及查询问题。常常在使用中以森林来表示。集就是让每个元素构成一个单元素的集合,也就是按一定顺序将属于同一组的元素所在的集合合并。
主要操作
1.初始化
把每个点所在集合初始化为其自身。
通常来说,这个步骤在每次使用该数据结构时只需要执行一次,无论何种实现方式,时间复杂度均为O(N)。
2.查找
查找元素所在的集合,即根节点。
3.合并
将两个元素所在的集合合并为一个集合。
通常来说,合并之前,应先判断两个元素是否属于同一集合,这可用上面的“查找”操作实现。
方法(1)
// 查 O(1)
int find1(int x)
{
return set[x]; //set[x]为初始化数组
}
//并 O(N)
void Merge1(int a,int b)
{
int i=min(a,b); //取最小的
int j=max(a,b); //取最大的
for(k=1;k<=N;k++)
{
if(set[k]==j)
set[k]=i; //最小的来并合
}
}
缺点:对于合并操作,需要用for循环来搜索全部的元素,复杂,有待改进。
方法(2):每个集合用一棵有根树来表示。
//查 最坏情况O(N)
int find2(int x)
{
int r=x;
while(set[r]!=r)
r=set[r]; //寻根点
return r;
}
//并 O(1)
void Merge2(int a,int b)
{
if(a>b)
set[a]=b; //取最小的并
else
set[b]=a;
}
优化后的算法
//查 最坏情况O(logN)
int find2(int x)
{
int r=x;
while(set[r]!=r)
r=set[r];
return r;
}
//并 O(1)
int Merge3(int a,int b)
{
if(height(a)==height(b))
{
height(a)=height(a)+1;
set[b]=a;
}
else if(height(a)<height(b))
set[a]=b;
else
set[b]=a;
}
带路径压缩的查找算法
int find3(int x)
{
int r = x;
while (set[r] != r) //循环结束,则找到根节点
r = set[r];
i = x; // r是最终的根节点
while (i != r) //本循环修改查找路径中所有节点
{
j = set[i];
set[i] = r;
i = j;
}}
例题1:畅通工程
题目描述:
某省调查城镇交通状况,得到现有城镇道路统计表,表中列出了每条道路直接连通的城镇。省政府“畅通工程”的目标是使全省任何两个城镇间都可以实现交通(但不一定有直接的道路相连,只要互相间接通过道路可达即可)。问最少还需要建设多少条道路?
输入描述:
测试输入包含若干测试用例。每个测试用例的第1行给出两个正整数,分别是城镇数目N ( < 1000 )和道路数目M;随后的M行对应M条道路,每行给出一对正整数,分别是该条道路直接连通的两个城镇的编号。为简单起见,城镇从1到N编号。 注意:两个城市之间可以有多条道路相通,也就是说3 31 21 22 1这种输入也是合法的当N为0时,输入结束,该用例不被处理。
输出描述:
对每个测试用例,在1行里输出最少还需要建设的道路数目。
Sample Input
4 2
1 3
4 3
3 3
1 2
1 3
2 3
5 2
1 2
3 5
999 0
0
Sample Output
1
0
2
998
参考代码
#include<iostream>
using namespace std;
int bin[1002];
int findx(int x)
{ int r=x;
while(bin[r] !=r)
r=bin[r];
return r;
}
void merge(int x,int y)
{
int fx,fy;
fx = findx(x);
fy = findx(y);
if(fx != fy)
bin[fx] = fy;
}
int main()
{ int n,m,i,x,y,count;
while(cin>>n && n)
{
for(i=1;i<=n;i++)
bin[i] = i;
for(cin>>m;m>0;m--)
{ cin>>x>>y;
merge(x,y);
}
for(count=-1, i=1;i<=n;i++)
if(bin[i] == i)
count ++;
cout<<count<<endl;
}
return 0;
}
例题2:小希的迷宫
题目描述:
上次Gardon的迷宫城堡小希玩了很久(见Problem B),现在她也想设计一个迷宫让Gardon来走。但是她设计迷宫的思路不一样,首先她认为所有的通道都应该是双向连通的,就是说如果有一个通道连通了房间A和B,那么既可以通过它从房间A走到房间B,也可以通过它从房间B走到房间A,为了提高难度,小希希望任意两个房间有且仅有一条路径可以相通(除非走了回头路)。小希现在把她的设计图给你,让你帮忙判断她的设计图是否符合她的设计思路。比如下面的例子,前两个是符合条件的,但是最后一个却有两种方法从5到达8。
输入描述:
输入包含多组数据,每组数据是一个以0 0结尾的整数对列表,表示了一条通道连接的两个房间的编号。房间的编号至少为1,且不超过100000。每两组数据之间有一个空行。 整个文件以两个-1结尾。
输出描述:
对于输入的每一组数据,输出仅包括一行。如果该迷宫符合小希的思路,那么输出”Yes”,否则输出”No”。
Sample Input
6 8 5 3 5 2 6 4
5 6 0 0
8 1 7 3 6 2 8 9 7 5
7 4 7 8 7 6 0 0
3 8 6 8 6 4
5 3 5 6 5 2 0 0
-1 -1
Sample Output
Yes
Yes
N
参考代码:
#include <iostream>
#include<cstdlib>
struct node
{
int parent;
int weight;
};
node maze[100001];
int visit[100001]; //是集合中的元素都被标记
int findfather ( int i )
{
while ( i != maze[i].parent )
i = maze[i].parent;
return i;
}
void merge ( int a, int b )
{
if ( maze[a].weight == maze[b].weight )
{
maze[b].parent = a;
maze[a].weight = b;
}
else if ( maze[a].weight > maze[b].weight )
maze[b].parent = a;
else
maze[a].parent = b;
}
int main ()
{
int a, b, a1, b1, sign;
while ( cin>>a>>b )
{
memset (visit , 0, sizeof (visit));
int maxn = 0;
int minn = 1000000;
for ( int i = 1; i < 100001; i ++ )
{
maze[i].parent = i;
maze[i].weight = 1;
}
if ( a == -1 && b == -1 ) break;
if ( a == 0 && b == 0 )
{ cout<<"Yes\n"; continue; }
sign = 0;
do {
if ( a < minn ) minn = a;
if ( b < minn ) minn = b;
if ( a > maxn ) maxn = a;
if ( b > maxn ) maxn = b;
visit[a] = visit[b] = 1;
a1 = findfather (a);
b1 = findfather (b);
if ( a1 == b1 ) //节点同根
{ sign=-1; }
else
merge (a1, b1);
cin>>a>>b;
if ( a== 0 && b == 0) break;
}while (1);
if ( sign == -1 )
{ cout<<"No\n"; }
if ( sign == 0 )
{
for (int i = minn; i <= maxn; i ++)
{
if ( visit[i] && maze[i].parent == i )
sign ++;
}
if (sign == 1) cout<<"Yes\n";
else cout<<"No\n";
}
}
return 0;
}