不读paper是不可能的
Moeyinss
intp/智性恋/推理迷/感性的理性主义者
展开
-
[NAS-Det]NATS
论文链接:Efficient Neural Architecture Transformation Search in Channel-Level for Object Detection设计了一个搜索空间,实现了专门用于目标检测的有效的结构转换搜索。基于darts的搜索方法,与darts搜索空间不同,将darts搜索不同操作改为搜索不同大小dilation(不同大小dilation不改变卷积核大小,可以复用预训练权重)。同时使用channel-level 代替 path-level,设计了ch原创 2020-05-12 21:21:07 · 343 阅读 · 0 评论 -
[NAS-Det]NAS-FPN
能够知道的是PAnet 等等跨尺度连接,允许模型将高层具有丰富语义信息等特征和底层具有高分辨率的特征结合起来本文仅使用增强学习的方法来训练基于retinanetFPN能堆叠N次来提高准确率 训练一个控制器,在给定的搜索空间中使用增强学习的方法选择最好的模型结构。控制器利用 搜索空间中子模型的准确率最为奖励信息来更新参数搜索空间结构使用backbone的输出作为输入{C3,C...原创 2020-05-12 12:00:19 · 1445 阅读 · 1 评论 -
[NAS-AutoAug]AutoAugment: Learning Augmentation Strategies from Data
论文链接:AutoAugment: Learning Augmentation Strategies from DataCVPR 2019论文设计了一个包含很多sub-policies的搜索空间,在每个小的batch中,为每张图片随机选择policysub-policy包含两种operation每个operation表示图像处理函数(1)直接在数据集上搜索(2)policy迁移到其他数据集也有效,将imagenet policy迁移到FGVC、Stanford Cars [27] and原创 2020-05-11 20:12:00 · 714 阅读 · 0 评论 -
[NAS]MobileDets
论文题目:MobileDets: Searching for Object Detection Architectures for Mobile AcceleratorsMobileDets主要内容发现广泛使用的仅限IBN的搜索空间对于EdgeTPUs和dsp等现代移动加速器来说可能是次优的。提出了一种新的搜索空间,TDB,它通过重新考虑常规卷积的有用性,在大范围的移动加速器上工作。...原创 2020-05-08 11:14:47 · 838 阅读 · 0 评论 -
[NAS-Det]DetNet
论文链接:DetNet: A Backbone network for Object DetectionECCV2018一个专门为物体检测任务而设计的 Backbone——DetNet主要是讨论设计检测的backbone带来大的有效接受域,考虑到分类问题和检测问题之间的差异DetNet 包含额外的层,在深层卷积中保持了高的空间分辨率使用分类的backbone来做分类任务有两个...原创 2020-05-07 18:28:15 · 307 阅读 · 0 评论 -
Bag of Tricks for Image Classification with Convolutional Neural Networks
论文链接:Bag of Tricks for Image Classification with Convolutional Neural Networks针对cnn图像分类的一些tricks迁移到其他任务比如检测语义分割上也有很好的效果2019 cvprbaseline 的选择在新的硬件上有效训练tricks对ResNet-50进行微调其他的一些训练tricks其他应用上...原创 2020-05-06 19:26:58 · 471 阅读 · 0 评论 -
[检测]YOLOv4
论文题目: YOLOv4: Optimal Speed and Accuracy of Object Detection论文链接:https://arxiv.org/pdf/2004.10934.pdf论文代码:https://github.com/AlexeyAB/darknetyolov4 其实相对创新点很少,可以理解为基于各种trick进行的一个grid search,找出最好的组合...原创 2020-04-30 23:13:48 · 1985 阅读 · 0 评论 -
[NAS]Fair darts代码解析
论文题目:Fair DARTS: Eliminating Unfair Advantages in Differentiable Architecture Search论文链接:https://arxiv.org/pdf/1911.12126.pdf论文代码:https://github.com/xiaomi-automl/FairDARTS关于fair-darts论文解析见[NAS]Fa...原创 2020-04-18 10:52:25 · 1014 阅读 · 0 评论 -
[NAS]Darts代码解析
darts论文链接:https://arxiv.org/pdf/1806.09055.pdfdarts源码链接:https://github.com/quark0/dartssearch部分'''train_search.py#数据准备(cifar10)。搜索时,从cifar10的训练集中按照1:1重新划分训练集和验证集'''train_transform, valid_tra...原创 2020-04-17 19:42:48 · 4839 阅读 · 10 评论 -
[NAS]Fair darts
论文题目:Fair DARTS: Eliminating Unfair Advantages in Differentiable Architecture Search论文链接:https://arxiv.org/pdf/1911.12126.pdf论文代码:https://github.com/xiaomi-automl/FairDARTSfair darts探讨了 DARTS 存在的...原创 2020-04-15 15:53:44 · 636 阅读 · 0 评论 -
[NAS-seg]RONASMIS
论文题目:Resource Optimized Neural Architecture Search for 3D Medical Image Segmentation基于强化学习参数共享实现搜索将重点放在宏观搜索的最优搜索空间上,而不是微观搜索关键词 3D医学分割,nas1.39 days for 1GB datasetone RTX 2080Ti with 10.8GB...原创 2020-04-07 19:30:32 · 336 阅读 · 0 评论 -
[NAS-seg]Scalable Neural Architecture Search for 3D Medical Image Segmentation
论文题目:Scalable Neural Architecture Search for 3DMedical Image Segmentation使用nas的方法,搜索3D医学图像分割的网络结构。提出基于SGD的双层优化,同时学习网络结构和相关操作参数搜索空间Cell C 有四种类型:encoder-normal (Cenc)(...原创 2020-04-07 08:45:33 · 905 阅读 · 0 评论 -
[NAS]NAS-FCOS
论文标题:NAS-FCOS: Fast Neural Architecture Search for Object Detection官方代码:https://github.com/Lausannen/NAS-FCOSFCOS结构图基于FCOS,使用nas方法,提出nas-fcos主要内容:1、使用nas方法,搜索FPN和head结构。2、使用nas方法,探索FPN和head之间...原创 2020-04-05 15:01:23 · 1748 阅读 · 0 评论 -
[NAS]OHL-Auto-Aug
论文题目:Online Hyper-parameter Learning for Auto-Augmentation Strategy之前的方法,采样很多policies, 每个训练一个子模型来衡量性能并通过控制器来更新policy的分布。这整个过程的计算量很大,很耗时。例如,采取了15000个policy样本,每种样本训练120个epochs。提出一种将自动增强问题 近似为 超参数的优化...原创 2020-04-04 13:52:59 · 503 阅读 · 0 评论 -
ValseWebinar : Fine-Grained Image Analysis and Beyond
20181226魏秀参:Fine-Grained Image Analysis and BeyondSCDA(con’t)深度描述子同一channel 对不同物体的激活部位不同保留最大的激活部分pre-trained 模型VLAD:基于一阶Fisher:基于二阶avg和max pool进行级连物体协同定位计算相关性保留 PCA 第一维...原创 2020-03-26 12:49:23 · 121 阅读 · 0 评论 -
GHM
论文题目:Gradient Harmonized Single-stage Detector论文链接:https://arxiv.org/pdf/1811.05181.pdf正、负样本简单和困难眼样本之间的不均衡问题负样本和简单样本数量多我们首先指出,这两个不均衡的本质影响可以用梯度的形式来概括所以提出GHMgradient harmonizing mechanism 来解决不均...原创 2020-03-12 16:22:02 · 2237 阅读 · 0 评论 -
Object Instance Mining for Weakly Supervised Object Detection
论文题目:Object Instance Mining for Weakly Supervised Object Detection论文链接:https://arxiv.org/pdf/2002.01087.pdf论文代码:https://github.com/bigvideoresearch/OIM现有的多目标检测学习很容易陷入局部最优,因为这个学习机制倾向于对每一个类别学习一张图片中最明...原创 2020-03-01 16:25:38 · 551 阅读 · 0 评论 -
PointRend
论文题目:PointRend: Image Segmentation as Rendering论文链接:https://arxiv.org/pdf/1912.08193.pdf代码地址:https://github.com/zsef123/PointRend-PyTorch 语义分割问题。提出一个新型上采样方法,针对物体边缘的图像分割进行优化,使其在难以分割的物体边缘部分有更好的表现。...原创 2020-02-23 16:51:12 · 3672 阅读 · 0 评论 -
IRNet: Instance Relation Network for Overlapping Cervical Cell Segmentation
论文题目:IRNet: Instance Relation Network for Overlapping Cervical Cell Segmentation论文链接:https://arxiv.org/pdf/1908.06623.pdf提出IRNet整体思路:首先图像输入RPN,生成目标候选框使用ROIalign对目标候选框进行特征提取之后feature map分别输入d...原创 2020-02-18 17:48:38 · 628 阅读 · 0 评论 -
DAFL:Data-Free Learning of Student Networks
Data-Free Learning of Student Networks 论文连接:https://arxiv.org/pdf/1904.01186.pdf论文代码:https://github.com/huawei-noah/Data-Efficient-Model-Compression/tree/master/DAFLcompressing deep models without...原创 2020-02-11 16:37:06 · 927 阅读 · 0 评论 -
MobileNet
MobileNet论文题目:MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications论文连接:https://arxiv.org/pdf/1704.04861.pdf主要工作是用depthwise sparable convolutions替代过去的standard convolut...原创 2020-02-10 13:24:15 · 294 阅读 · 0 评论 -
ShuffleNet
ShuffleNet论文:ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices 论文连接:https://arxiv.org/pdf/1707.01083.pdf 降低深度网络计算 该文章主要采用 channel shuffle 、pointwise...原创 2020-02-08 22:45:41 · 184 阅读 · 0 评论