MICCAI 2020 Challenges

本文介绍了2020年多个医学影像领域的国际挑战赛,包括冠状动脉自动分割、脑部肿瘤分析、糖尿病足溃疡检测等。这些挑战赛旨在推动医学影像处理技术的发展,涉及的任务包括分割、检测、分类和配准等。各赛事提供训练、验证和测试数据,并设有严格的截止日期,优胜者有机会参与高水平论文的撰写。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

MICCAI 2020 Challenges



1

REFUGE2
2nd Retinal Fundus Glaucoma Challenge
第二届眼底青光眼竞赛

文档:
https://zenodo.org/record/3714947#.XuS2R2ozZQI
竞赛:
https://refuge.grand-challenge.org/

  • 临床青光眼的分类;
  • 视盘和杯的分割;
  • 中央凹的定位,重视临床应用和技术研究
    3月10日: 开始(训练400 +验证400 +测试400)
    7月1日: 团队注册
    7月20日:验证集和评估开启
    8月10日:半决赛dealine截止
    9月5日:报告提交截止
    9月10日:最终截止
    10月8日:现场

组织方会prepare综述论文,投稿到IEEE TMI和或MedIA
train 400
val 400
test 400


2

HECKTOR
3D Head and Neck Tumor Segmentation in PET/CT
(PET/CT三维头颈部肿瘤分割)

文档:
https://zenodo.org/record/3714957#.XuSjtmozZQJ
竞赛

https://www.aicrowd.com/challenges/hecktor
探索和比较各种方法来从两种模式中提取和合并信息,包括早期或晚期融合,基于全体积或基于补丁的方法,2-D,2.5-D或3-D方法

多模态
6月10日:训练集发布
8月1日:测试集发布
9月1日-9月10日:提交
9月15:结果 发布
10月4日:研讨会
参赛者需要写overview论文
two co-authorships
多模态
201
每个实例包含
CT, PET and GTVt in NIfTI format
nii.gz

bbox_location.csv
patient_info_training.csv file


3

ABCs
Anatomical Brain Barriers to Cancer Spread: Segmentation from CT and MR images
(解剖脑部肿瘤扩散屏障分割)

文档:
https://zenodo.org/record/3746561#.XuS3jmozZQI

竞赛:
https://abcs.mgh.harvard.edu/
任务1.分割大脑结构,以用于自动定义放射治疗的临床目标体积(CTV)
任务2。任务 的目标是分割要在放射治疗计划优化中使用的结构。

CT/MR
多模态
xx:训练集发布
6月15日:发布测试数据(排行榜)

9月20日:发布测试数据(最终评分)
10月1日:意向提交论文
10月4日:结果公告
11月29日:最终paper
协调出版一份关于这一挑战的出版物
60例病例,每例包括计划的CT扫描和两次MR扫描


4

ASOCA
Automated Segmentation of Coronary Arteries(冠状动脉的自动分割

文档:
https://zenodo.org/record/3819799#.XuS5FGozZQI
竞赛:
https://asoca.grand-challenge.org/
血管分割
6月18日:训练集 发布
8月15日:测试卷
9月15日:提交deadline
9月30日:公布

ps:竞赛官网,受covid19影响,还没有发布
组织方会邀请前10名提交方法的作者(2位)作为co-authors

LightSpeed66s64slices
CT

(少了)<

### 医学图像超分辨率处理的数据集 医学图像超分辨率(Medical Image Super-Resolution, MISR)旨在提高低分辨率医学图像的质量,从而更好地支持临床诊断和研究工作。由于医学成像设备和技术的不同特性以及隐私保护的要求,MISR面临独特的挑战。 #### 常见的医学图像超分辨率数据集 1. **IXI Dataset** IXI 数据库由伦敦大学学院 (UCL) 提供,包含了来自健康志愿者的大脑 MRI 图像。该数据库提供了多种模态下的高质量 T1 加权、T2 加权及 PD 加权图像,适合用于评估不同的 MISR 方法[^2]。 2. **BraTS Challenge Data** BraTS 是一个多中心多模式脑肿瘤分割挑战赛使用的公开数据集,其中也包含了一些可用于超分辨重建的任务。这些数据包括高分辨率的 FLAIR 和 T1c 扫描结果,可以作为训练或验证模型的良好资源[^3]。 3. **MICCAI Grand Challenges** MICCAI 组织了一系列针对特定医疗应用领域的竞赛活动,在此过程中产生了多个专门面向某种疾病或器官类型的高质量标注数据集合。例如 LITS 肝脏病变检测比赛中的 CT 影像资料就非常适合用来探索肝脏区域内的细节恢复问题。 4. **OASIS Cross-sectional MRI Data Release 1** OASIS 是一项大型开放存取项目,提供老年人群的认知状态与大脑结构之间的关系研究所需的各种类型影像记录。这里不仅有常规解剖序列,还有功能磁共振成像 fMRI 序列可供选择,能够满足不同类型的研究需求。 5. **The Cancer Imaging Archive (TCIA)** TCIA 收录了大量癌症患者的相关放射组学特征描述及其对应的病理报告文件,覆盖范围广泛,涉及胸部 X 光片、乳腺钼靶摄影等多种形式。特别是对于那些希望专注于某一类恶性肿瘤治疗效果预测方向的同学来说是非常宝贵的学习材料之一。 为了确保所选数据集适用于具体的科研目标,建议仔细阅读各平台发布的官方文档说明,并考虑实际应用场景中可能遇到的技术难题。此外,考虑到伦理审查等因素的影响,在获取并使用任何个人敏感信息前都需要获得相应授权或许可证明。 ```python import os from medpy.io import load as mload def list_medical_datasets(): datasets = { "IXI": "https://brain-development.org/ixi-dataset/", "BraTS": "http://braintumorsegmentation.org/", "LITS": "https://www.synapse.org/#!Synapse:syn3193802/wiki/217766", "OASIS": "https://www.oasis-brains.org/", "TCIA": "https://www.cancerimagingarchive.net/" } for name, url in datasets.items(): print(f"{name}: {url}") if __name__ == "__main__": list_medical_datasets() ```
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值