(Datawhale)基于逻辑回归的分类预测

1.学习目标

  • 了解 逻辑回归 的理论
  • 掌握 逻辑回归 的 sklearn 函数调用使用并将其运用到鸢尾花数据集预测

2.逻辑回归简介

逻辑回归(Logistic regression,简称LR)虽然其中带有"回归"两个字,但逻辑回归其实是一个分类模型,并且广泛应用于各个领域之中。虽然现在深度学习相对于这些传统方法更为火热,但实则这些传统方法由于其独特的优势依然广泛应用于各个领域中。

而对于逻辑回归而言,最为突出的两点就是其模型简单和模型的可解释性强。

逻辑回归模型的优劣势:
优点:实现简单,易于理解和实现;计算代价不高,速度很快,存储资源低;
缺点:容易欠拟合,分类精度可能不高。

3.逻辑回归的原理

逻辑回归,也叫作 logistic 回归。虽然名字中带有“回归”,但它实际上是分类方法,主要解决的是二分类问题,当然它也可以解决多分类问题,只是二分类更常见一些。

在逻辑回归中使用了 Logistic 函数,也称为 Sigmoid 函数。Sigmoid 函数是在深度学习中经常用到的函数之一,函数公式为:

Logistic函数

函数的图形如下所示,类似 S 状:

Logistic函数图像

可以看出g(z) 的结果在 0-1 之间,当 z 越大的时候,g(z) 越大,当 z 趋近于无穷大的时候,g(z) 趋近于 1。同样当 z 趋近于无穷小的时候,g(z) 趋近于 0。同时,函数值以 0.5 为中心。

将回归方程写入其中为:1

所以,img

对于模型的训练而言:实质上来说就是利用数据求解出对应的模型的特定的ω。从而得到一个针对于当前数据的特征逻辑回归模型。

为什么逻辑回归算法是基于 Sigmoid 函数实现的呢?你可以这样理解:我们要实现一个二分类任务,0 即为不发生,1 即为发生。我们给定一些历史数据 X 和 y。其中 X 代表样本的 n 个特征,y 代表正例和负例,也就是 0 或 1 的取值。通过历史样本的学习,我们可以得到一个模型,当给定新的 X 的时候,可以预测出 y。这里我们得到的 y 是一个预测的概率,通常不是 0% 和 100%,而是中间的取值,那么我们就可以认为概率大于 50% 的时候,即为发生(正例),概率小于 50% 的时候,即为不发生(负例)。这样就完成了二分类的预测。

而对于多分类而言,将多个二分类的逻辑回归组合,即可实现多分类。

4.sklearn 中的逻辑回归工具

在 sklearn 中,我们使用 LogisticRegression() 函数构建逻辑回归分类器,函数里有一些常用的构造参数

penalty:惩罚项,取值为 l1 或 l2,默认为 l2。当模型参数满足高斯分布的时候,使用 l2,当模型参数满足拉普拉斯分布的时候,使用 l1;

solver:代表的是逻辑回归损失函数的优化方法。有 5 个参数可选,分别为 liblinear、lbfgs、newton-cg、sag 和 saga。默认为 liblinear,适用于数据量小的数据集,当数据量大的时候可以选用 sag 或 saga 方法。

max_iter:算法收敛的最大迭代次数,默认为 10。

n_jobs:拟合和预测的时候 CPU 的核数,默认是 1,也可以是整数,如果是 -1 则代表 CPU 的核数。

当我们创建好之后,就可以使用 fit 函数拟合,使用 predict 函数预测。

5.基于鸢尾花的数据分类预测

本次我们选择鸢花数据(iris)进行方法的尝试训练,该数据集一共包含5个变量,其中4个特征变量,1个目标分类变量。共有150个样本,目标变量为 花的类别 其都属于鸢尾属下的三个亚属,分别是山鸢尾 (Iris-setosa),变色鸢尾(Iris-versicolor)和维吉尼亚鸢尾(Iris-virginica)。包含的三种鸢尾花的四个特征,分别是花萼长度(cm)、花萼宽度(cm)、花瓣长度(cm)、花瓣宽度(cm),这些形态特征在过去被用来识别物种。

#基于鸢尾花的分类预测练习代码
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt 
import seaborn as sns
#导入sklearn自带的iris数据
from sklearn.datasets import load_iris
#利用pandas转化为DataFrame格式
data = load_iris()
iris_target = data.target  
iris_features = pd.DataFrame(data=data.data,columns=data.feature_names)
iris_features.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 4 columns):
sepal length (cm)    150 non-null float64
sepal width (cm)     150 non-null float64
petal length (cm)    150 non-null float64
petal width (cm)     150 non-null float64
dtypes: float64(4)
memory usage: 4.8 KB
iris_features.head()
sepal length (cm)sepal width (cm)petal length (cm)petal width (cm)
05.13.51.40.2
14.93.01.40.2
24.73.21.30.2
34.63.11.50.2
45.03.61.40.2
iris_features.tail()
sepal length (cm)sepal width (cm)petal length (cm)petal width (cm)
1456.73.05.22.3
1466.32.55.01.9
1476.53.05.22.0
1486.23.45.42.3
1495.93.05.11.8
#对应的类别标签
iris_target
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
       2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
       2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])
iris_features.describe()
sepal length (cm)sepal width (cm)petal length (cm)petal width (cm)
count150.000000150.000000150.000000150.000000
mean5.8433333.0540003.7586671.198667
std0.8280660.4335941.7644200.763161
min4.3000002.0000001.0000000.100000
25%5.1000002.8000001.6000000.300000
50%5.8000003.0000004.3500001.300000
75%6.4000003.3000005.1000001.800000
max7.9000004.4000006.9000002.500000
#利用value_counts函数查看每个类别数量
pd.Series(iris_target).value_counts()
2    50
1    50
0    50
dtype: int64
 #合并标签和特征信息
iris_all = iris_features.copy() #进行浅拷贝,防止对于原始数据的修改
iris_all['target'] = iris_target
# 特征与标签组合的散点可视化
#在2D情况下不同的特征组合对于不同类别的花的散点分布,以及大概的区间。
sns.pairplot(data=iris_all,diag_kind='hist', hue= 'target')
plt.show()

在这里插入图片描述

#利用箱型图得到不同类别在不同特征上的分布差异情况。
for col in iris_features.columns:
    sns.boxplot(x='target', y=col, saturation=0.5, 
palette='pastel', data=iris_all)
    plt.title(col)
    plt.show()

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

# 选取其前三个特征绘制三维散点图
from mpl_toolkits.mplot3d import Axes3D

fig = plt.figure(figsize=(10,8))
ax = fig.add_subplot(111, projection='3d')

iris_all_class0 = iris_all[iris_all['target']==0].values
iris_all_class1 = iris_all[iris_all['target']==1].values
iris_all_class2 = iris_all[iris_all['target']==2].values
# 'setosa'(0), 'versicolor'(1), 'virginica'(2)
ax.scatter(iris_all_class0[:,0], iris_all_class0[:,1], iris_all_class0[:,2],label='setosa')
ax.scatter(iris_all_class1[:,0], iris_all_class1[:,1], iris_all_class1[:,2],label='versicolor')
ax.scatter(iris_all_class2[:,0], iris_all_class2[:,1], iris_all_class2[:,2],label='virginica')
plt.legend()

plt.show()

在这里插入图片描述

from sklearn.model_selection import train_test_split
##选择其类别为0和1的样本(不包括类别为2的样本)
iris_features_part=iris_features.iloc[:100]
iris_target_part=iris_target[:100]
##测试集大小为20%,80%/20%分
x_train,x_test,y_train,y_test=train_test_split(iris_features_part,iris_target_part,test_size=0.2,random_state=2020)
从sklearn中导入逻辑回归模型
from sklearn.linear_model import LogisticRegression
#定义逻辑回归模型
clf=LogisticRegression(random_state=0,solver='lbfgs')
#在训练集上训练逻辑回归模型
clf.fit(x_train,y_train)
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,
          penalty='l2', random_state=0, solver='lbfgs', tol=0.0001,
          verbose=0, warm_start=False)
#查看其对应的w
print('the weight of Logistic Regression:',clf.coef_)
#查看其对应的w0
print('the intercept(w0) of Logistic Regression:',clf.intercept_)
the weight of Logistic Regression: [[ 0.45244919 -0.81010583  2.14700385  0.90450733]]
the intercept(w0) of Logistic Regression: [-6.57504448]
#在训练集和测试集上分布利用训练好的模型进行预测
train_predict=clf.predict(x_train)
test_predict=clf.predict(x_test)
from sklearn import metrics
#利用accuracy(准确度)【预测正确的样本数目占总预测样本数目的比例】评估模型效果
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_train,train_predict))
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_test,test_predict))
#查看混淆矩阵(预测值和真实值的各类情况统计矩阵)
confusion_matrix_result=metrics.confusion_matrix(test_predict,y_test)
print('The confusion matrix result:\n',confusion_matrix_result)
#利用热力图对于结果进行可视化
plt.figure(figsize=(8,6))
sns.heatmap(confusion_matrix_result,annot=True,cmap='Blues')
plt.xlabel('Predictedlabels')
plt.ylabel('Truelabels')
plt.show()
The accuracy of the Logistic Regression is: 1.0
The accuracy of the Logistic Regression is: 1.0
The confusion matrix result:
 [[ 9  0]
 [ 0 11]]

在这里插入图片描述

#我们可以发现其准确度为1,代表所有的样本都预测正确了。
#利用 逻辑回归模型 在三分类(多分类)上 进行训练和预测
#测试集大小为20%,80%/20%分
x_train,x_test,y_train,y_test=train_test_split(iris_features,iris_target,test_size=0.2,random_state=2020)
#定义逻辑回归模型
clf=LogisticRegression(random_state=0,solver='lbfgs')
#在训练集上训练逻辑回归模型
clf.fit(x_train,y_train)
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,
          penalty='l2', random_state=0, solver='lbfgs', tol=0.0001,
          verbose=0, warm_start=False)
#查看其对应的w
print('the weight of Logistic Regression:\n',clf.coef_)
#查看其对应的w0
print('the intercept(w0) of Logistic Regression:\n',clf.intercept_)
#由于这个是3分类,所有我们这里得到了三个逻辑回归模型的参数,其三个逻辑回归组合起来即可实现三分类

the weight of Logistic Regression:
 [[-0.43538857  0.87888013 -2.19176678 -0.94642091]
 [-0.39434234 -2.6460985   0.76204684 -1.35386989]
 [-0.00806312  0.11304846  2.52974343  2.3509289 ]]
the intercept(w0) of Logistic Regression:
 [  6.30620875   8.25761672 -16.63629247]
#在训练集和测试集上分布利用训练好的模型进行预测
train_predict=clf.predict(x_train)
test_predict=clf.predict(x_test)
#由于逻辑回归模型是概率预测模型(前文介绍的p=p(y=1|x,\theta)),所有我们可以利用predict_proba函数预测其概率

train_predict_proba=clf.predict_proba(x_train)
test_predict_proba=clf.predict_proba(x_test)

print('The test predict Probability of each class:\n',test_predict_proba)
#其中第一列代表预测为0类的概率,第二列代表预测为1类的概率,第三列代表预测为2类的概率。

#利用accuracy(准确度)【预测正确的样本数目占总预测样本数目的比例】评估模型效果
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_train,train_predict))
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_test,test_predict))
The test predict Probability of each class:
 [[1.32525870e-04 2.41745142e-01 7.58122332e-01]
 [7.02970475e-01 2.97026349e-01 3.17667822e-06]
 [3.37367886e-02 7.25313901e-01 2.40949311e-01]
 [5.66207138e-03 6.53245545e-01 3.41092383e-01]
 [1.06817066e-02 6.72928600e-01 3.16389693e-01]
 [8.98402870e-04 6.64470713e-01 3.34630884e-01]
 [4.06382037e-04 3.86192249e-01 6.13401369e-01]
 [1.26979439e-01 8.69440588e-01 3.57997319e-03]
 [8.75544317e-01 1.24437252e-01 1.84312617e-05]
 [9.11209514e-01 8.87814689e-02 9.01671605e-06]
 [3.86067682e-04 3.06912689e-01 6.92701243e-01]
 [6.23261939e-03 7.19220636e-01 2.74546745e-01]
 [8.90760124e-01 1.09235653e-01 4.22292409e-06]
 [2.32339490e-03 4.47236837e-01 5.50439768e-01]
 [8.59945211e-04 4.22804376e-01 5.76335679e-01]
 [9.24814068e-01 7.51814638e-02 4.46852786e-06]
 [2.01307999e-02 9.35166320e-01 4.47028801e-02]
 [1.71215635e-02 5.07246971e-01 4.75631465e-01]
 [1.83964097e-04 3.17849048e-01 6.81966988e-01]
 [5.69461042e-01 4.30536566e-01 2.39269631e-06]
 [8.26025475e-01 1.73971556e-01 2.96936737e-06]
 [3.05327704e-04 5.15880492e-01 4.83814180e-01]
 [4.69978972e-03 2.90561777e-01 7.04738434e-01]
 [8.61077168e-01 1.38915993e-01 6.83858427e-06]
 [6.99887637e-04 2.48614010e-01 7.50686102e-01]
 [5.33421842e-02 8.31557126e-01 1.15100690e-01]
 [2.34973018e-02 3.54915328e-01 6.21587370e-01]
 [1.63311193e-03 3.48301765e-01 6.50065123e-01]
 [7.72156866e-01 2.27838662e-01 4.47157219e-06]
 [9.30816593e-01 6.91640361e-02 1.93708074e-05]]
The accuracy of the Logistic Regression is: 0.9583333333333334
The accuracy of the Logistic Regression is: 0.8
#查看混淆矩阵
confusion_matrix_result=metrics.confusion_matrix(test_predict,y_test)
print('The confusion matrix result:\n',confusion_matrix_result)
#利用热力图对于结果进行可视化
plt.figure(figsize=(8,6))
sns.heatmap(confusion_matrix_result,annot=True,cmap='Blues')
plt.xlabel('Predicted labels')
plt.ylabel('True labels')
plt.show()
The confusion matrix result:
 [[10  0  0]
 [ 0  7  3]
 [ 0  3  7]]

在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值