脑机接口EEG信号分类算法

期末考试终于完了,有空下午来实验室搬搬砖,下面写写最近在EEG信号分类算法上的一些总结,并以思维导图的方式和大家分享,希望和大家共同探讨关于脑电信号的分类算法。《A review of classification algorithms for EEG based brain–computer interfaces: a 10 year update》http://iopscience.iop.org/article/10.1088/1741-2552/aab2f2/meta
人工智能的发展也给脑机接口技术带来了很广阔的空间,目前限制脑机接口技术的走出实验室的主要原因是脑电信号的因人而异性,在线脑机接口的信号传输率,准确率等。下面对目前在脑机接口领域运用的特征提取算法和模式分类算法作简要的总结:

常用的特征提取方法如下

1、 频带功率特征。
2、 时间点特征。
除上述两种常用的特征提取方法之外的方法:
1、连接特征,这些特征测量来自不同传感器和/或频段的信号之间的相关性或同步。
2、协方差矩阵和张量法,特征是各种传感器数据、时间点或频率等的线性组合,它们可能没有一个明显的物理/生理解释,但仍然证明对BCI设计有用。
3、多特征联合提取,组合多种EEG特征,但须注意分类算法的维度灾难。
特征提取结束后可以采用特征选择步骤选择具有潜在优点的特征子集去除信息的冗余,可减少过度训练的可能性和优化模型性能。
常用的特征选择方法如下:
1、基于知识提取的线性回归分类器。
2、蚁群、群体搜索、禁忌搜索和模拟退火算法也正在越来越多的用于BCI的特征选择。

评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值