Tensorflow初探之MNIST数据集学习

本文介绍了使用TensorFlow进行MNIST数据集的学习,通过最小梯度法训练,实现手写数字识别,训练后准确率达到91.49%。内容包括数据导入、模型训练和交叉熵损失函数的解释。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

官方文档传送门


MNIST数据集是手写数字0~9的数据集,一般被用作机器学习领域的测试,相当于HelloWorld级别。


本程序先从网上导入数据,再利用最小梯度法进行训练使得样本交叉熵最小,最后给出训练之后程序的准确率。


交叉熵的定义:


y 是我们预测的概率分布, y' 是实际的分布。

该指标用来衡量学习结果与实际情况的差距。


import tensorflow.examples.tutorials.mnist.input_data as input_data
import tensorflow as tf
#initialize
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10]))
y = tf.nn.soft
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值