Python数据可视化之密度图的绘制

本文介绍了如何使用Python进行数据可视化,特别是针对人流密度的计算和绘制。通过假设光线从人头位置向外扩散,利用二维高斯分布计算各点密度,并结合颜色表生成密度图。提供了相关代码和颜色表资源链接。
摘要由CSDN通过智能技术生成

密度图表现与数据值对应的边界或域对象的一种理论图形表示方法。一般用于呈现连续变量。
摘自百度百科

在计算机科学当中,数据的可视化常常被提起。近日,在图像处理当中,需要统计图片中的人流密度并绘制相应密度图,于是小小研究一番。效果如下:


所有代码保存在Github上。

首先需要一张颜色表,从上至下分别表示密度多少时颜色的深浅。在我的程序当中,颜色表保存在map.mat当中。颜色表下载链接:
链接: https://pan.baidu.com/s/13P7uqw9Q0Kc8wPyhORRQkw 提取码: dqm6

接下来就是求密度了。当获得了人头的位置之后,我们可以假设光线从头的四周向外发射,光强度分布服从二维高斯分布。这样,某点的光强 T = e k ∗ d i s R T=e^{k* \frac{dis}{R}} T=ekRdis
其中,k是小于0的常数,R是高斯分布的半径,dis为人头到当前点的距离。当dis=0,也就是当前点处在人头中心时,T取最大值1.

将所有人头的密度累加,与颜色表一一对应,就得到了密

  • 4
    点赞
  • 55
    收藏
    觉得还不错? 一键收藏
  • 14
    评论
评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值