题目地址:https://leetcode.com/problems/unique-paths/description/
A robot is located at the top-left corner of a m x n grid (marked ‘Start’ in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked ‘Finish’ in the diagram below).
How many possible unique paths are there?
Above is a 3 x 7 grid. How many possible unique paths are there?
Note: m and n will be at most 100.
这个题目有个简单的做法,那就是递归,但是递归不太好处理比较大的数字,
为了解决时间上的问题,我们可以用DP的思想解决这个问题,因为题目中已经告诉我们这个机器人只能向右移动或者向下移动,那么我们可以建立一个m x n的矩阵,矩阵的每个元素保存到当前单元有多少种路径。那么我们会发现这样的规律:
arr[i][j]=arr[i−1][j]+arr[i][j−1]
而且当
i=0
或者
j=0
arr[i][j]=0
于是代码可以这样写:
public class UniquePaths {
public static int _uniquePaths(int m, int n) {
if (m == 0 || n == 0)
return 0;
if (m == 1 || n == 1)
return 1;
return uniquePaths(m - 1, n) + uniquePaths(m , n - 1);
}
public static int uniquePaths(int m, int n) {
if (m == 0 || n == 0)
return 0;
if (m == 1 || n == 1)
return 1;
int[][] arr = new int[m][n];
for (int i = 0; i < m; i++) {
arr[i][0] = 1;
}
for (int i = 0; i < n; i++) {
arr[0][i] = 1;
}
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
arr[i][j] = arr[i - 1][j] + arr[i][j - 1];
}
}
return arr[m - 1][n - 1];
}
public static void main(String[] args) {
System.out.println(uniquePaths(3, 7));
}
}