Unique Paths

题目地址:https://leetcode.com/problems/unique-paths/description/

A robot is located at the top-left corner of a m x n grid (marked ‘Start’ in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked ‘Finish’ in the diagram below).

How many possible unique paths are there?

这里写图片描述

Above is a 3 x 7 grid. How many possible unique paths are there?
Note: m and n will be at most 100.

这个题目有个简单的做法,那就是递归,但是递归不太好处理比较大的数字,

为了解决时间上的问题,我们可以用DP的思想解决这个问题,因为题目中已经告诉我们这个机器人只能向右移动或者向下移动,那么我们可以建立一个m x n的矩阵,矩阵的每个元素保存到当前单元有多少种路径。那么我们会发现这样的规律:

arr[i][j]=arr[i1][j]+arr[i][j1]

而且当 i=0或者 j=0
arr[i][j]=0

于是代码可以这样写:

public class UniquePaths {
    public static int _uniquePaths(int m, int n) {
        if (m == 0 || n == 0)
            return 0;
        if (m == 1 || n == 1)
            return 1;
        return uniquePaths(m - 1, n) + uniquePaths(m , n - 1);
    }

    public static int uniquePaths(int m, int n) {
        if (m == 0 || n == 0)
            return 0;
        if (m == 1 || n == 1)
            return 1;

        int[][] arr = new int[m][n];

        for (int i = 0; i < m; i++) {
            arr[i][0] = 1;
        }
        for (int i = 0; i < n; i++) {
            arr[0][i] = 1;
        }

        for (int i = 1; i < m; i++) {
            for (int j = 1; j < n; j++) {
                arr[i][j] = arr[i - 1][j] + arr[i][j - 1];
            }
        }

        return arr[m - 1][n - 1];
    }

    public static void main(String[] args) {
        System.out.println(uniquePaths(3, 7));
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值