关于canny边缘检测的处理过程

本文介绍了高斯滤波在图像处理中用于消除噪声的作用,通过加权平均使得图像像素点更加平滑。接着讲解了Sobel算子在计算图像梯度方面的应用,用于检测潜在的边缘点。非极大抑制和滞后抑制是Canny边缘检测的后续步骤,前者通过抑制非边缘点突出边缘,后者通过设定高低阈值进一步筛选真实边缘。文章探讨了这两个步骤中的细节问题,如梯度方向的意义和点连接的概念。
摘要由CSDN通过智能技术生成

高斯滤波是一种线性平滑滤波,适用于消除高斯噪声,广泛应用于图像处理的减噪过程。

通俗的讲,高斯滤波就是对整幅图像进行加权平均的过程,每一个像素点的值,都由其本身和邻域内的其他像素值经过加权平均后得到。

高斯滤波的具体操作是:用一个模板(或称卷积、掩模)扫描图像中的每一个像素,用模板确定的邻域内像素的加权平均灰度值去替代模板中心像素点的值。

一般是用一个3*3的模板(卷积)去扫描图像中的每个像素点,加权平均确定中心像素点的值。

用自己的话来讲就是:用周围像素点的加权平均值来替代这个中心点,这样的话,如果中心点是一个像素值突变的噪点的化,那么它经过加权平均后也可以与周围正常的点像素值靠近,消除噪点的影响。


Sobel算子是一个离散微分算子 (discrete differentiation operator)。 它用来计算图像灰度函数的近似梯度。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值