Python OpenCV读取16位单通道图像并转换为8位灰度图显示

本文介绍如何使用OpenCV正确读取和显示单通道16位整型图像,通过像素值归一化处理,避免信息损失,确保图像信息完整呈现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

       语义、实例分割数据集的标注图像以及一些深度图像等都是由单通道16位整型图像存储的,我们通常需要读取这种图像并显示出来,由于OpenCV一般只能够对8位图像进行显示,也就是像素范围在0~255的图像,而16位图像的像素范围是0~65535,直接不加操作直接读取16位图像显示会导致区段被压缩而损失掉一些区域的值。

       所以,对于单通道uint16类型的图像,要利用OpenCV读取并显示需要进行像素值归一化操作,也就是将原16位像素值归一化到0~1的float型,而后再转化到uint8形成可显示的图像。Python实现代码如下:

uint8_img = cv2.imread(img_path)
uint16_img = cv2.imread(img_path, -1)
uint16_img -= uint16_img.min()
uint16_img = uint16_img / (uint16_img.max() - uint16_img.min())
uint16_img *= 255
new_uint16_img = uint16_img.astype(np.uint8)
cv2.imshow('UINT8', uint8_img)
cv2.imshow('UINT16' new_uint16_img)

       在cv2.imread参数中加入-1,表示不改变读取图像的类型直接读取,经过归一化后的图像能够比较完整地保留原始图像的信息。

 

评论 18
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值