##¥##2019年结束前最后两小时,写出本年度最后一篇博客,不是博主没地方去跨年,实在是Coding乐趣无穷ahhhh ##¥##
COCO数据集是研究实例分割的通用数据集,但是针对道路环境的数据较少,对于自动驾驶和移动机器人的应用并不适配。而提供道路环境的实例分割数据的数据集目前有KITTI、CityScapes、Apllo等,CityScapes算是应用较广,数据质量较高的一个,所以,本篇博文给大家分享一下将CityScapes的实例标注转换为COCO格式的过程。
首先,COCO的标注信息格式参考博文:https://blog.csdn.net/u012609509/article/details/88680841,COCO的图片文件均放在一个文件夹下,而其标注信息都放在annotation文件夹的不同.json文本中,一个文本中包含了对所有图片以及某一任务的所有图片的标注信息。
CityScapes提供的标注信息有彩色语义图、实例id单通道图、语义id单通道图以及所有语义polygon的文本描述.json:
一个COCO标注文件中包含info、lisenses、categories、images以及annotations,代码初始预先设定了前三项,categories可以根据自己的需要进行修改,我保留的类别有5类,car、pedestrian(person)、truck、bus、rider,对应cityscapes中类别id的24-28, 以下是cityscapes完整的类别定义:
List of cityscapes labels:
name | id | trainId | category | categoryId | hasInstances | ignoreInEval
--------------------------------------------------------------------------------------------------
unlabeled | 0 | 255 | void | 0 | 0 | 1
ego vehicle | 1 | 255 | void | 0 | 0 | 1
rectification border | 2 | 255 | void | 0 | 0 | 1
out of roi | 3 | 255 | void | 0 | 0 | 1
static | 4 | 255 | void | 0 | 0 | 1
dynamic | 5 | 255 | void | 0 | 0 | 1
ground | 6 | 255 | void | 0 | 0 | 1
road | 7 | 0 | flat | 1 | 0 | 0
sidewalk | 8 | 1 | flat | 1 | 0 | 0
parking | 9 | 255 | flat | 1 | 0 | 1
rail track | 10 | 255 | flat | 1 | 0 | 1
building | 11 | 2 | construction | 2 | 0 | 0
wall | 12 | 3 | constr