使用迅雷下载FSNS数据集

本文介绍了FSNS数据集,一个适用于端到端OCR算法训练的法国街道标志图像集,并详细说明了如何利用迅雷新下载FSNS数据集的步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、什么是FSNS数据集?
FSNS(French Street Name Sign)指的是法国街道名称标志,它包含了大量的法国街道名称标志的图像。该数据集最显著的特征是不包含图像文本定位的标注,可以用来作为端到端的OCR(Optical Character Recognition)算法训练与测试的数据集。

二、怎样使用迅雷下载FSNS数据集?
(1). 安装pywin32,打开Anaconda Prompt、PowerShell或者cmd,输入以下命令:

python -m pip install pypiwin32  

(2).具体下载代码如下:

import argparse
import os
import urllib.request

#win32com安装方式:python -m pip install pypiwin32  
#python为对应环境下的python解释器
from win32com.client import Dispatch

#fsns (French Street Name Sign)数据集下载路径
BASE_URL = "http://download.tensorflow.org/data/fsns-20160927/"   


#数据集标记,test,train,validation分别为测试集,训练集,验证集
#0代表从第0部分开始下载,64,512,64代表每一个数据集包含的总部分数
SETS = [
	('test', 0, 64),   
	('train', 0, 512),
	('validation', 0
### 使用JMeter从HTTP响应中提取名为`fsns`的JSON字段值 在使用Apache JMeter进行API测试时,如果需要从JSON格式的HTTP响应中提取特定字段(如`fsns`),可以利用JMeter内置的JSON提取器和正则表达式提取器。对于精确匹配并高效获取所需数据而言,推荐采用JSON提取器配合JSONPath语法[^1]。 #### 配置JSON提取器以捕获`fsns` 为了实现这一目标,在测试计划内的适当采样器之后添加一个后置处理器——即JSON Extractor组件。设置此组件的关键在于指定恰当的变量名称用于存储提取的结果以及编写准确描述待取回元素位置的JSONPath表达式[^3]。 - **命名**: 给定一个易于识别的名字给这个后置处理器实例。 - **适用范围**: 确认它被附加到能够返回含有`fsns`属性之JSON对象的那个请求上。 - **配置详情**: - 变量名: 输入希望保存所提取得来的`fsns`值得名字,比如叫作`extractedFsns`. - JSON路径表达式: 编写类似于`.fsns`或者更复杂的查询语句来精确定位到想要的数据节点. - 默认值(可选): 如果找不到对应的键,则赋予默认值. 通过上述方法定义好JSON Extracter后,后续可以在断言、监听器或者其他逻辑控制器里引用`${extractedFsns}`这样的形式访问刚才抽取出来的信息[^2]. ```json { "data": { "fsns": [ {"id":"001","name":"example"}, ... ] } } ``` 假设这是部分来自服务器端口的一个示范性的回复结构体;那么针对单层嵌套下的`fsns`数组,可以直接运用简单的`.`操作符指向该成员项即可完成选取工作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值