自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(601)
  • 资源 (27)
  • 收藏
  • 关注

原创 大模型数据污染 & 大模型动态评估

论文翻译:arxiv-2024 Estimating Contamination via Perplexity: Quantifying Memorisation in Language Model 高论文翻译:ICLR-2024 PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS 高论文翻译:arxiv-2024 Benchmark Data Contamination of Large Language Models: A Sur

2024-09-14 14:34:50 1225

原创 大模型安全相关研究

本文整理了关于大模型安全领域的综合性资源,包括7篇综述论文、9个安全数据集以及5篇强化学习相关的安全研究论文。主要涉及大模型的对抗攻击、隐私保护、安全评估等方向,涵盖TruthfulQA、ToxiGen等知名数据集和TrustLLM、HarmBench等关键研究。资源包括知乎博主分享、arXiv预印本和顶会论文,并附有详细的中文讲解链接,为研究者提供了系统性的安全研究参考。

2024-09-11 10:19:33 859

原创 公开 学生课堂行为数据集 SCB-Dataset: A Dataset for Detecting Student and Teacher Classroom Behavior

公开 学生课堂行为数据集 SCB-Dataset Student Classroom Behavior dataset

2023-04-08 22:12:12 11911 7

原创 论文阅读:arxiv 2025 Thinking Fast and Right: Balancing Accuracy and Reasoning Length with Adaptive Rewar

这篇论文聚焦于解决大语言模型(LLMs)在推理时存在的过度冗长问题,提出了一种名为自适应直接长度惩罚(A-DLP)的奖励塑造方法,旨在让模型既能快速思考又能保证推理的正确性。

2025-06-13 15:17:36 254

原创 论文阅读:2025 arxiv Rule-Guided Feedback: Enhancing Reasoning by Enforcing Rule Adherence in Large Langu

总目录 大模型安全相关研究:https://blog.csdn.net/WhiffeYF/article/details/142132328https://arxiv.org/pdf/2503.11336https://www.doubao.com/chat/8798278966113794Rule-Guided Feedback: Enhancing Reasoning by Enforcing Rule Adherence in Large Language Models这篇论文提出了一种名为规则引导

2025-06-13 14:47:22 214

原创 论文阅读:arxiv 2025 How Likely Do LLMs with CoT Mimic Human Reasoning?

这篇论文揭穿了LLM的“小聪明”:它们用CoT时可能不是在认真推理,而是先猜答案再编过程。要让模型像人一样思考,不能只靠扩大模型或调参,得从因果关系入手,让推理步骤真正“说了算”。

2025-06-13 10:37:20 400 1

原创 论文阅读:arxiv 2025 Self-Training Elicits Concise Reasoning in Large Language Models

大语言模型并非“必须啰嗦”,而是缺乏激发简洁推理的训练。通过自训练结合最佳采样和少样本提示,模型能在不牺牲准确性的前提下,显著提升推理效率,为实际部署中的成本优化提供了可行方案。

2025-06-13 10:30:22 562 1

原创 论文阅读:arxiv 20205 Innate Reasoning is Not Enough: In-Context Learning Enhances Reasoning Large Langua

总目录 大模型安全相关研究:https://blog.csdn.net/WhiffeYF/article/details/142132328https://arxiv.org/pdf/2503.19602https://www.doubao.com/chat/8751693021735170Innate Reasoning is Not Enough: In-Context Learning Enhances Reasoning Large Language Models with Less Overthi

2025-06-13 09:46:57 535 1

原创 论文阅读:arxiv 2025 Chain of Draft: Thinking Faster by Writing Less

CoD证明了大模型推理不必“啰嗦”,用简洁的“要点式”思考既能保证准确性,又能显著提升效率、降低成本,为大模型的实际应用(尤其是对延迟和成本敏感的场景)提供了新方向。

2025-06-13 09:38:49 287 1

原创 论文阅读:arxiv 2025 Measuring the Faithfulness of Thinking Drafts in Large Reasoning Models

这篇论文揭示了大型推理模型在推理过程中存在的“言行不一”问题,并提供了一套评估方法。未来的模型不仅需要强大的推理能力,还需要在思考草稿中保持“忠实”,让人类能真正理解和信任其决策过程。

2025-06-12 10:36:16 674 1

原创 论文阅读:arxiv 2025 ThinkLess: A Training-Free Inference-Efficient Method for Reducing Reasoning Redunda

核心价值:ThinkLess提供了一种“即插即用”的推理优化方案,无需修改模型或额外训练,就能在保持准确性的同时大幅提升推理效率,适用于对响应速度和资源消耗敏感的实际应用。待改进方向:目前终止位置固定,缺乏针对问题难度的动态调整策略;对指令质量依赖较高,复杂任务可能需要手动优化指令;在更大规模模型和更多任务类型上的扩展性仍需验证。

2025-06-12 00:26:10 431 1

原创 论文阅读:2025 arxiv Effectively Controlling Reasoning Models through Thinking Intervention

这篇论文提出的方法就像给大模型的思考过程装了一个“导航”,在它跑偏时及时纠正,既不改变模型本身,又能让它更精准、安全地完成任务,为开发更可靠的AI系统提供了新思路。

2025-06-12 00:20:11 685 1

原创 论文阅读:2023 arxiv A Prompt Pattern Catalog to Enhance Prompt Engineering with ChatGPT

提示工程:给大语言模型(如ChatGPT)下达指令的技巧。这些指令能定制模型输出、规范交互规则,甚至“编程”让模型完成特定任务,比如生成符合特定风格的代码或自动部署脚本。提示模式:类比“软件设计模式”,是解决大语言模型交互中常见问题的“可复用方案”。例如,当你希望模型按特定格式输出或主动提问获取信息时,可直接套用对应的模式。这篇文章的核心价值在于,将碎片化的提示技巧系统化,形成可复用的“模式语言”。

2025-06-11 20:53:27 504 1

原创 论文阅读:2025 中科院一区 AI Agents Under Threat: A Survey of Key Security Challenges and Future Pathways

AI代理越聪明,越需要“安全铠甲”。这篇文章把它们面临的风险讲得很透,也指了路:只有解决好输入、内部逻辑、环境和外部交互的安全问题,AI才能真正靠谱地帮我们干活,而不是被坏人利用。

2025-06-11 19:25:00 689 1

原创 ASR(语音识别)语音/字幕标注 通过via(via_subtitle_annotator)

摘要:本文介绍了VIA工具在语音/字幕标注中的使用方法,包括视频加载、时间片段添加(快捷键A)、字幕内容填写以及JSON文件保存等操作步骤。同时详细列出了VIA的键盘快捷键,涵盖常规操作(如播放控制、时间移动)、时间片段编辑(如删除、合并)和空间区域处理(如选择、删除区域)等功能,帮助用户高效完成多媒体标注任务。关键操作包括空格键播放、Shift调整片段边界、Ctrl精确移动时间片段等。

2025-06-09 12:55:19 1063

原创 论文阅读:2025 arxiv When Thinking Fails: The Pitfalls of Reasoning for Instruction-Following in LLMs

推理增强的大型语言模型(RLLMs),无论是经过显式推理训练还是通过思维链(CoT)提示,都在许多复杂推理任务上取得了最先进的性能。然而,我们发现了一个令人惊讶且此前被忽视的现象:显式的CoT推理会显著降低遵循指令的准确性。我们在两个基准测试上评估了15个模型:IFEval(具有简单、可验证规则的约束)和ComplexBench(具有复杂、组合约束),发现应用CoT提示时性能始终下降。

2025-06-08 20:37:09 835 1

原创 Paraformer分角色语音识别-中文-通用 FunASR demo测试与训练

FunASR分角色语音识别模型测试摘要 本文介绍了如何使用FunASR框架中的Paraformer中文通用语音识别模型进行分角色语音识别测试。首先通过ModelScope下载预训练模型,然后使用Python脚本加载模型并测试音频识别效果。测试音频是一段包含对话的教学场景录音,识别结果准确展现了语音内容的时间分段和文本转写效果。模型支持语音活动检测(VAD)、标点恢复(PUNC)和说话人识别(SPK)等功能的灵活配置。文章提供了详细的安装步骤和代码示例,包括ffmpeg安装、模型下载方法以及识别测试脚本。测试

2025-06-04 22:38:49 849 1

原创 论文阅读:2024 ACL fingding Virtual Context: Enhancing Jailbreak Attacks with Special Token Injection

这篇论文揭示了大模型中一个被忽视的安全漏洞:特殊令牌可能被用来伪造模型的“自我生成内容”,诱导其输出有害信息。Virtual Context方法简单高效,无需复杂技术即可实施,对当前大模型的安全性构成了新的威胁,也为防御方提供了新的研究方向。

2025-05-31 11:50:13 1090 1

原创 论文阅读:2025 arxiv Scaling Reasoning, Losing Control: Evaluating Instruction Following in Large Reasoni

核心结论:当前大型推理模型在“智能”和“可控”之间存在根本矛盾,提升推理能力往往以牺牲指令遵循为代价。未来方向:需要设计新的训练方法,让模型既能深度推理,又能“牢记指令”,比如在训练中加入更多约束感知机制。一句话总结:这篇研究告诉我们,让聪明的数学模型“听人话”并不容易,越会解题的模型可能越“任性”,如何平衡能力与可控性,是未来AI发展的重要挑战。指令遵循能力对于实现大型语言模型(LLMs)与用户意图的对齐至关重要。

2025-05-28 17:01:29 1092 1

原创 大模型现象级发现-2025年上半年 资料收集

让QwQ思考模型-不思考的小技巧2025-05-27 最新实验:不听人类指令 OpenAI模型拒绝自我关闭https://x.com/PalisadeAI/status/1926084635903025621公众号qwen3的致命幻觉!大模型微调会思考的大模型更不听话,我的豆包失控了…所有大模型都在讨好人类https://arxiv.org/html/2505.13995v1OpenAI最新技术报告:GPT-4o变谄媚的原因万万没想到不要思考过程,推理模型能力能够更强丨UC伯克利等最新研究Reas

2025-05-27 16:48:40 249

原创 AutoDAN-Turbo 复现 AutoDAN-Turbo: A Lifelong Agent for Strategy Self-Exploration to Jailbreak LLMs

本文介绍了在AutoDL平台上部署和优化AutoDAN-Turbo大模型安全研究工具的过程。主要内容包括:1)通过ModelScope SDK下载Qwen、DeepSeek等系列大模型;2)针对国内网络环境对原项目进行改造,包括移除OpenAI/HuggingFace依赖,替换为国内兼容方案(如DashScope嵌入模型);3)创建修改版仓库AutoDAN-Turbo-C,详细记录了核心文件(pipeline.py、模型加载模块等)的代码改动;4)提供了适配后的安装流程和依赖配置说明。该项目解决了原工具在国

2025-05-26 15:19:15 906

原创 论文阅读:2024 arxiv Prompt Injection attack against LLM-integrated Applications

论文揭示了LLM集成应用的潜在安全漏洞,提出了高效的HOUYI攻击方法,并通过大规模实验验证了其威胁。这一研究不仅警示开发者重视提示注入风险,也为后续防御技术的发展奠定了基础。

2025-05-26 09:28:47 819 1

原创 论文阅读: 2023 NeurIPS Jailbroken: How does llm safety training fail?

想象你有一个智能助手,原本它会拒绝帮你做坏事(比如教你偷东西),但黑客通过某种技巧让它“听话”了——这就是。

2025-05-26 09:12:59 1218 1

原创 论文阅读:2025 ACM Computing Surveys. Security and Privacy Challenges of Large Language Models: A Survey

大语言模型是一把“双刃剑”,既能推动科技进步,也带来安全与隐私风险。这篇论文呼吁研究者、开发者和政策制定者共同努力,通过技术创新(如更鲁棒的防御算法)和制度规范(如数据隐私法规),让大语言模型更安全、可信地服务于人类。最重要的表。

2025-05-26 00:20:31 686 1

原创 论文阅读:2023 arxiv Baseline defenses for adversarial attacks against aligned language models

论文通过实验验证了三类经典防御在LLMs中的有效性,揭示了文本离散性和计算成本对攻击的限制,并呼吁关注灰盒防御和高效优化技术的研究。这为大语言模型的安全部署提供了重要参考。

2025-05-26 00:09:34 624 1

原创 项目阅读:Instruction Defense

指令防御是一种通过在提示词(prompt)中明确加入警示内容,使模型警惕用户可能使用的各类“提示词攻击”(prompt hacking)手段的方法。其核心是在提示词中添加引导性指令,促使模型对用户后续输入的内容保持谨慎判断。

2025-05-25 23:49:25 472

原创 github项目:llm-guard

是一个开源项目,欢迎社区成员参与贡献,包括修复 bug、提出新功能建议、改进文档等。用户可以在 GitHub 上给项目加星支持。开发的一个全面的工具库,旨在增强大语言模型(LLMs)交互的安全性。,包括与 Amazon Bedrock、OpenAI API 等的集成。提供了多个示例脚本,展示如何在不同的场景中使用。,包括入门指南、API 文档、变更日志等。包含详细的文档,帮助用户了解如何使用。

2025-05-25 21:09:10 361

原创 论文阅读:arxiv 2024 SmoothLLM: Defending LLMs Against Jailbreaking Attacks

大语言模型(如GPT、Llama)虽然经过训练以符合人类伦理,但黑客可以通过精心设计的。

2025-05-25 20:52:06 969 1

原创 具有思考模式模型部署:Qwen3、DeepSeek-R1-Distill、Phi-4、QWQ系列

本文介绍了如何在Autodl平台上部署和运行多个开源大语言模型,包括Qwen3、DeepSeek-R1-Distill、Phi-4和QWQ。首先,通过Modelscope SDK下载模型,并提供了相应的Python脚本示例。接着,使用Transformers库加载模型和分词器,并设置了生成参数以生成文本。最后,通过一个简单的提示词“Give me a short introduction to large language models”展示了模型的输出结果。文章详细介绍了每个步骤的操作方法,适合开发者快速

2025-05-21 18:50:59 639

原创 论文阅读:ICLR 2025 AutoDAN-Turbo: A Lifelong Agent for Strategy Self-Exploration to Jailbreak LLMs

AutoDAN-Turbo就像一个“AI黑客训练师”,能自动学习如何绕过语言模型的安全防护。它的出现凸显了大模型安全的脆弱性,也为对抗性测试提供了新工具——但同时也提醒我们,AI安全需要持续进化,以应对不断升级的攻击手段。

2025-05-18 16:42:27 687 1

原创 论文 nanoGCG复现 Universal and Transferable Adversarial Attacks on Aligned Language Models

论文翻译:Universal and Transferable Adversarial Attacks on Aligned Language Models论文 GCG 复现 Universal and Transferable Adversarial Attacks on Aligned Language Models。

2025-05-17 15:50:24 948

原创 学生课堂抬头率检测计算 基于YOLOv7与视觉大模型

抬头率YOLOv7和视觉大模型对比YOLO:42.6%豆包:无法计数通义:6%YOLO:93.9%豆包:22.2%通义:87.5%YOLO:94.4%豆包: 67%通义:70%YOLO:98.6%豆包:30%通义:0%在这里插入图片描述YOLO:58.6%豆包:3.57%通义:3.33%YOLO只能判断明显低头的人数,所以抬头率在学生低头幅度不大的情况下,判断为抬头,所以抬头率偏高。豆包不准确率。通义较好,但是不稳定。

2025-05-10 20:38:40 861

原创 论文 GCG 复现 Universal and Transferable Adversarial Attacks on Aligned Language Models

论文翻译:Universal and Transferable Adversarial Attacks on Aligned Language Models。

2025-05-08 20:00:21 876 1

原创 论文 AttnGCG 复现 AttnGCG: Enhancing Jailbreaking Attacks on LLMs with Attention Manipulation

论文阅读:2024 arxiv AttnGCG: Enhancing Jailbreaking Attacks on LLMs with Attention Manipulation。

2025-05-07 11:23:15 346

原创 顶会论文 AutoDAN 复现 2024 ICLR AutoDAN: Generating Stealthy Jailbreak Prompts on Aligned Large

备注:requirements.txt中删掉torch==2.0.1,因为已经安装好了。Llama-2-7b-chat-hf 模型下载。

2025-05-02 23:18:46 429

原创 论文阅读:2025 Expert Systems with Applications.SLBDetection-Net: Towards closed-set and open-set student

通过对K-12教育阶段学生在课堂上学习行为的有效分析,能够极大地改善教与学之间的互动,从而提高教育质量。然而,目前对学生课堂行为的传统分析主要集中在单一场景下的封闭集行为检测。对于复杂且开放的真实课堂环境而言,挑战在于在人员密集的小型复杂场景中获取有意义的行为表征,同时在封闭集和开放集环境中都能取得良好的性能表现。为应对这些挑战,本研究引入了一种在封闭集和开放集场景中检测学生学习行为的新方法,称为SLBDetection-Net。该方法专注于准确捕捉学习行为表征,特别强调多尺度聚焦关键信息(MFKI)。

2025-05-02 22:28:15 864 1

原创 论文阅读:2024 arxiv AttnGCG: Enhancing Jailbreaking Attacks on LLMs with Attention Manipulation

在图中,输入被分为系统提示(System Prompt)、用户提示(包含目标提示和对抗后缀)两部分,输出部分展示了模型针对不同输入的回应结果。通过对比,清晰地展示出AttnGCG相较于传统GCG方法,在引导模型生成恶意内容、绕过安全协议方面具有更高的成功率,凸显出操纵模型注意力分数对增强越狱攻击效果的重要作用。这篇论文主要研究了基于Transformer的大语言模型(LLMs)在越狱攻击方面的漏洞,提出了一种叫AttnGCG的方法来增强攻击效果。

2025-04-30 15:43:24 953 2

原创 论文阅读:2024 EMNLP User Inference Attacks on Large Language Models

这个威胁模型的关键在于,攻击者仅通过少量来自用户的样本和对模型的黑盒访问(只能查询模型的似然值,不知道模型内部结构和参数),就能尝试推断用户数据是否用于模型微调,揭示了大语言模型在使用用户数据微调时存在的隐私风险。这篇论文主要研究了大语言模型(LLMs)在使用用户数据进行微调时的隐私问题,提出了用户推理攻击概念,并探讨了相应的缓解策略。

2025-04-30 15:09:03 975 1

原创 论文阅读:2024 ICML In-Context Unlearning: Language Models as Few-Shot Unlearners

这篇论文主要介绍了一种针对大语言模型(LLMs)的新型遗忘学习方法——上下文内遗忘(In-Context Unlearning,ICUL),旨在解决从模型中删除特定训练数据的问题。Figure 1:上下文内遗忘与标准遗忘的差异。Figure 2:上下文内遗忘的示例。

2025-04-30 14:35:44 1040 1

原创 论文阅读:2024 ICLR Teach LLMs to phish: Stealing private information from language models

这篇论文是在ICLR 2024会议上发表的,研究人员提出了一种针对大语言模型(LLMs)的“神经网络钓鱼攻击”,揭示了大语言模型在处理敏感用户数据时存在的隐私风险。通过这三个阶段,攻击者就能利用“神经网络钓鱼攻击”,在只掌握少量模糊信息的情况下,从大语言模型中窃取敏感信息,且攻击成功率可达10%-80%。Figure 1展示了“神经网络钓鱼攻击”(neural phishing attack)的三个阶段,目的是从大语言模型中窃取敏感信息。

2025-04-30 14:13:51 891 1

YOLOv8 代码包 修改版

YOLOv8 代码包

2023-09-21

ckpt.t7 DHN.pth osnet-x0-25.pth yolov7

https://github.com/Whiffe/Yolov7-tracker

2023-08-24

ckpt.t7 DHN.pth osnet-x0-25.pth yolov7

https://github.com/Whiffe/Yolov7-tracker

2023-08-24

latest-model-099-94.7200.pth

面部表情识别模型权重 https://github.com/Whiffe/PyTorch-Facial-Expression-Recognition

2023-08-09

rfb-face-mask.pth

面部表情识别模型权重 https://github.com/Whiffe/PyTorch-Facial-Expression-Recognition

2023-08-09

aflw2000-data.zip

https://github.com/choyingw/SynergyNet aflw2000_data.zip

2023-08-05

3dmm-data.zip

https://github.com/choyingw/SynergyNet 3dmm_data.zip

2023-08-05

best.pth.tar

https://github.com/choyingw/SynergyNet best.pth.tar

2023-08-05

EGE C/C++ 贪吃蛇

EGE C/C++ 贪吃蛇

2023-07-05

适用于Yolo训练和测试的coco数据集标签文件 train2017.txt和val2017.txt

适用于Yolo训练和测试的coco数据集标签文件 train2017.txt和val2017.txt和train2017.zip和val2017.zip yolov7 yolov5 yolov8

2023-05-06

Youtube-Hands yolov7 detection

Youtube-Hands yolov7 detection

2022-12-12

yolov7 hand detection

yolov7 hand detection

2022-12-12

face-dataset img 人脸识别 样例

face_dataset img 人脸识别 样例

2022-11-30

人脸识别素材 4张人脸图

人脸识别素材 4张图

2022-11-29

22-8-6 mmaction2 slowfast训练配置 训练日志分析

包含配置文件: 训练日志:20220805_165139.log.json 训练配置:my_slowfast_kinetics_pretrained_r50_4x16x1_20e_ava_rgb.py 训练配置(为了测试训练集的效果):my_slowfast_kinetics_pretrained_r50_4x16x1_20e_ava_rgb2.py

2022-08-06

22-8-4 mmaction2 slowfast训练日志

22-8-4 mmaction2 slowfast训练日志 包含配置文件:my_slowfast_kinetics_pretrained_r50_4x16x1_20e_ava_rgb.py 训练结束后使用最好的checkpoint的参数进行测试,将测试结果存储在:part_0.pkl 训练过程的记录:20220804_185539.log.json

2022-08-05

archery.mp4 行为识别 pytorchvideo demo演示视频(行为识别)

https://pytorchvideo.org/docs/tutorial_torchhub_inference#load-an-example-video archery.mp4 pytorchvideo demo演示视频

2022-07-30

archery.mp4 行为识别 pytorchvideo demo演示视频(行为识别)

https://pytorchvideo.org/docs/tutorial_torchhub_inference#load-an-example-video archery.mp4 pytorchvideo demo演示视频

2022-07-30

pretrained model on ucf24

ucf_dla34_K7_rgb_coco.pth pretrained model on ucf24

2022-07-20

课堂学习行为测量系统的设计与实现_张鸿宇.caj

课堂是学校教育的核心,课堂教学过程评价对于教学质量的提高有重要意义,而学生的课堂行为表现是课堂教学评价的重要成分。通过评价学生的课堂行为,形成有效的反馈信息和教学导向,可以有效的促进课堂教学和学生的发展。因此,利用现在的计算机视觉技术和教学过程的相关测量手段相结合,对教室中的学生学习行为进行测量,形成对学生、对课堂的多维度的客观评价和反馈,对于提高课堂内的教学效率和教学质量有着重要的意义。本文在课堂学习场景下,研究了基于体感信息的学习者动作识别的算法以及相关应用系统的设计和实现。 论文的主要贡献是设计并实现了课堂学习场景下基于体感信息的多学习者行为测量系统:针对的Kinect骨骼数据特点,本文提出了基于人体上肢骨骼结构的姿态识别方法,该方法通过选用结构向量间的向量角和向量模比值作为最终的姿态向量特征,采用SVM分类器对姿态向量特征进行分类和识别;实现了一个集数据采集、识别、记录、分析和展示于一体的课堂行为识别系统,对课堂交互活动行为分析和课堂整体活跃态势进行了分析,并使用该系统进行了针对学习者个人评价和针对课堂活跃度评价的实验。 通过测试结果表明,本文提出的姿态识别方法能有效地识别多个学习者的举手、正坐和低头等姿态,该课堂行为识别系统具有一定的实用性;通过模拟课堂实验得出对于学生个人的参与度评价、每道题的难度评价、整个课堂活跃度的评价的实验性结论,对于课堂教学过程评价具有一定的参考意义。

2021-04-15

ASR(语音识别)语音/字幕标注 及转化为ASR Paraformer 可训练数据

标注网站:https://whiffe.github.io/VIA/via_subtitle_annotator.html 标注教程:https://blog.csdn.net/WhiffeYF/article/details/148530647 0001.mp4 视频,标注用 0001.json 标注后保存的json json2ASR.py 将json转化为ASR训练格式文件 train_text.txt train_wav.scp 训练格式文件,json2ASR生成 wav 文件夹,里面是抽取的wav音频,训练用,json2ASR生成 extract_audio.py 从0001.mp4中抽取3分钟wav音频文件的脚本,用于测试 0001.wav 从0001.mp4中抽取3分钟的wav音频,测试用

2025-06-11

chatgpt-detector-roberta

chatgpt-comparison-detection,检测单条文本,中文版, chatgpt-detector-roberta

2025-03-19

大型语言模型的各种安全性议题

视频:https://www.youtube.com/watch?v=MSnvknLywUc&t=1116s PPT:https://drive.google.com/file/d/15afa2wJBbVbykn-KazUoiBSz8UF5ttI0/view?pli=1

2025-02-26

语文课堂数据分析:《西门豹治邺》教学洞察

内容概要:本文提供了针对语文课程《西门豹治邺》的一个详细的课堂教学数据分析报告。报告不仅评估了教学方法的有效性及其带来的学生参与情况的变化,还从多个维度(如教师讲解方式、互动频率、学生的个体表达机会等)分析了一堂课的实际效果,旨在揭示并改善当前教学中的潜在问题,并为教育工作者提供了宝贵的见解和改进建议。 适用人群:一线语文教师及相关教研人员。 使用场景及目标:用于反思现有授课方式的优点和缺陷,确定需要改进的地方并优化教学质量,确保每一个学生都能得到应有的关注和发展。 其他说明:此报告通过大数据技术客观分析课程实际运行状况的同时也非常重视教师的专业判断与实践经验相结合的方式,从而更好地服务于教学实践的发展。

2024-10-09

宁波荣安实验中学AI驱动的教学评价系统需求验证报告

内容概要:本文档介绍了为宁波荣安实验中学定制的人工智能分析解决方案,旨在利用AI技术和‘影像大脑’平台来评估‘听课量化评分表’以及‘学导型’生本课堂教学质量表。通过对多个课堂评价要素的技术可行性验证显示:大部分关注点如‘抬头率’‘趴桌现象检测’等都能满足实际应用需求并已拥有较为成熟的技术支撑。但在某些特殊指标如学生的动手操作率方面尚须更多的研究和具体的样本集支持。 适用人群:项目实施团队成员及技术负责人。 使用场景及目标:验证基于人工智能技术对于中小学教室教学质量监督的实际应用可能性和效率提升程度。 其他说明:现阶段结果显示该系统的大多数需求都可以得到技术支持并且有着很好的前景;但部分细节仍然面临技术挑战需要进一步细化和完善。

2024-10-09

从同课异构角度看乡村初中英语课堂中学习活动观的实践-李梦晓

内容概要:该论文通过对湖北乡村初中英语课堂进行同课异构的教学活动设计对比分析,指出了在实践中存在的诸如教师对学习活动观概念理解不足以及设计活动中对学生自主性的忽视等问题,并为优化乡村教师理解和运用该理论提供了具体建议。 适用人群:初中英语教师,特别是服务于乡村地区的教师,乡村地区教育研究人员以及致力于改善英语教学质量的教学管理者。 使用场景及目标:适用于乡村学校的初中英语听说课堂的教学准备阶段,目的在于优化教师针对不同学生的差异化需求调整教学法并有效地融入学习活动关的核心思想。 其他说明:研究表明乡村地区教育质量的改善取决于教师对现代化教学理念的理解深度及其课堂执行的效果。

2024-10-09

同课异构,呈现精彩课堂-以“认识平行线”教学为例胡梦文 同课异构应用于《认识平行线》教学实践探索

内容概要:本文通过两位教师对中国苏教版小学四年级的《认识平行线》这一章节的课堂教学案例进行对比解析。分别展示了两种不同的教学流程设计,一种是以小组合作探究为主的方式讲解平行线的基本概念和特性,另一种则是基于生活情景引导的方式介绍平行线及其应用场景,通过这两种不同策略的实际操作来说明'同课异构'模式下课堂可以呈现出不同风采,进而推动教学质量的提升和教学模式多样化。同时也探讨了选择适当的教学方法对学生掌握数学本质概念的重要性和练习设计对于理解和运用新知识的作用。 适用人群:一线教育工作者特别是中小学校授课老师、课程开发者、研究人员以及其他致力于课程设计、教学改进的研究人员。 使用场景及目标:用于指导教师更好地进行同课异构设计与实践活动,通过多样化的教学方式激发学生的学习兴趣,深化对教学大纲的认识,最终达到提高教学质量的目标,同时亦鼓励教师专业上的持续发展和个人学术素养的提高。 其他说明:此外还阐述了这种教学方法背后的理念支持,即强调教师应当充分尊重个体差异并发挥各自优势,以此为基础来进行课程准备并展开教学实践,使得整个教科研氛围更为活跃富有成果。

2024-10-09

课堂师生交互智能分析技术研究综述-崔家郡

课堂师生交互智能分析技术研究综述-崔家郡

2024-10-09

基于课堂智能分析大模型的教...学能力分析框架及其应用研究-方海光

基于课堂智能分析大模型的教...学能力分析框架及其应用研究-方海光

2024-10-09

人工智能赋能研究生课堂教学质量评价新模式-刘长红

人工智能赋能研究生课堂教学质量评价新模式-刘长红

2024-10-09

基于人工智能的课堂分析架构-一种智能的课堂教学研究-杨晓哲

基于人工智能的课堂分析架构-一种智能的课堂教学研究-杨晓哲

2024-10-09

基于生成式人工智能的探究式教学设计与应用研究-张明飞

基于生成式人工智能的探究式教学设计与应用研究-张明飞

2024-10-09

mobilenet-v2-b0353104 resnet18-5c106cde resnet34-333f7ec4 预训练模型

mobilenet_v2-b0353104.pth、resnet18-5c106cde.pth、resnet34-333f7ec4.pth 预训练模型

2024-09-24

Transformer 论文+李沐视频+李宏毅视频 代码逐行跟踪

Transformer 论文+李沐视频+李宏毅视频 代码逐行跟踪

2024-09-10

生成式人工智能对课堂教学的变革影响 文 - 孙 众

人工智能的发展经历了从计算智能、感知智能到认知智能的三代进化历程。当机器已具备认知智能时,若 课堂教学仍以布卢姆认知目标分类法为理论指导,以培养学生认知能力为主要目标,必然面临重大危机。 要实现生成式人工智能深度融入学校教育教学,为课堂教学带来教育新质生产力,文章提出“四个更重要” 的教学主张:掌握专家思维比专家结论更重要;经历学习过程比呈现学习结果更重要;改变评价理念比改 变评价形式更重要;重视科学教育的同时,培养人文精神更重要。 关键词:生成式人工智能;认知智能;认知目标分类;课堂教学

2024-08-28

我国 2013-2023 年课堂视频分析的研究现状 * -基于 CiteSpace 的可视化林芷洁,杨玉宝

我国2013-2023年课...CiteSpace的可视化_林芷洁 【摘  要】课堂视频分析已成为教师、学生、教育管理者数字素养提升和实现教育高质量发展的重要工具。为探 究国内课堂教学视频分析研究的现状,文章以中国知网 2013-2023 年收录的 276 篇核心文献为计量分析对象,通过 CiteSpace 可视化分析,发现“视频分析”“课堂互动”“话语分析”和“人工智能”等成为课堂视频分析的研究热点, 且在分析技术和分析工具及应用效果等方面取得了显著进展,特别是人工智能技术有望成为推动该领域发展的新技术。 未来,需要扩大课堂视频分析的研究范围,挖掘和设计以深度学习为导向更能反映学科特点的视频分析编码系统,聚 焦师生的数字素养提升,助力新质生产力的发展。 【关键词】课堂视频分析;可视化分析;课堂互动;CiteSpace

2024-08-28

表情分类模型-基于人脸 emotion.pth

['angry', 'disgust', 'fear', 'happy', 'neutral', 'sad', 'surprise']

2024-08-20

生成式 AI 商业落地白皮书 给 CXO 的 AI 转型战术指南

生成式 AI 商业落地白皮书 给 CXO 的 AI 转型战术指南 01 场景案例大全 Gen-AI 240 应用全场景地图 消费零售 金融 汽车 医药大健康 智能终端 教育和科研 制造 企业服务 案例 01 飞鹤“3+3+2”战略蓝图 AI 能力中台建设 案例 05 汽车销售顾问的强大助手“SalesCopilot” 案例 02 海底捞 x 豆包大模型智慧洞察用户需求 案例 03 海尔消金携手火山引擎,共建消费金融大模型 案例 04 捷途汽车 x 豆包大模型打造智能客服“AI 小捷” 案例 06 北京协和医院基于豆包大模型和 HiAgent 研发智能运 维助手和 HIS 指南针 案例 08 OPPO × 火山引擎通过大模型强化手机终端识别、理解 和响应用户需求的能力 案例 10 面向生物医学领域打造一站式、智能化 AI 操作系统 Bio-OS 案例 09 华硕与火山引擎合作将大模型集成至“豆叮 AI 助手” 案例 11 火山引擎助力南开大学打造“AI + 教育”新生态 案例 12 大模型改善企业信息搜索体验 案例 13 豆包大模型助力晓多科技“AI 训练场 与 全渠道智能知 识库”智

2024-07-28

读论文Rethinking the Role of Demonstrations What Makes In-Context

【读论文】Rethinking the Role of Demonstrations What Makes In-Context Learning Work

2024-03-09

读论文Rethinking the Role of Demonstrations What Makes In-Context

【读论文】Rethinking the Role of Demonstrations What Makes In-Context Learning Work

2024-03-09

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除