沐神 -- 内存节省

​ 运行一些操作可能会导致为新结果分配内存。例如,我们用 Y=X+Y,我们将取消引用Y指向的张量,而是指向新分配的内存处的张量。

before = id(Y)
Y = Y + X
id(Y) == before  # 输出是False

​ 这可能是不可取的,原因有两个:
1、首先,我们不想总是不必要地分配内存。在机器学习中,我们可能有数百兆的参数,并且在一秒内多次更新所有参数。通常情况下,我们希望原地执行这些更新;
2、如果我们不原地更新,其他引用仍然会指向旧的内存位置,这样我们的某些代码可能会无意中引用旧的参数。

​ 执行原地操作:使用 X[:] = X + YX+=Y ,减少操作的内存开销。

Z = torch.zeros_like(Y)
print('id(Z):', id(Z))
Z[:] = X + Y  # 用 [:] 选择数组X中的所有元素,然后将这些元素替换为 X+Y 的结果
print('id(Z):', id(Z))
before = id(X)
X += Y
id(X) == before
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值