在 《小结》 中,列出LEAN类型系统所定义的全部规律,下面 关于 LEAN 属性 的一些推论(Lemma)进行注解。主要是其规范性(Regularity),以说明LEAN类型系统是完备构建的(well founded),即不存在相互矛盾的规律。
原文中,已给出解析,同时该推论,一般可以对规律的归纳中可以得出,这里就不再赘述,只列出一下,关键点。
一、规范性(Regularity)
析:给定,在假设 Γ 下,表达式 e 的类型为α,那么 假设 Γ 是完备的。在定义 ⊢ Γ ok,有下面两个规则:
1. Γ 为空;
2. Γ 包含了所有自由变量(Free variables)及其类型信息,记 a : α。
那么,给定了 Γ ⊢ e : α,即 赋型规则,Γ 里必须包含 e : α 所有所需的自由变量及其类型信息,如果,存在 某个自由变量及其类型信息,使用在 e : α,而没被 Γ 包含,那么 Γ 就不 ok了。由此,通过,归纳(induct on)所有的赋型规则,是否存在一条规则,使得 Γ 不包含 e : α 存在的自由变量的。
析:同上。
析:基于 Γ ⊢ α type 规则的在LEAN类型系统中的唯一性,由此,只有当 α: Uₗ 时,才有 α type。即 上述推论是可接受的(admissible)。
析:通过,归纳(induct on)所有的赋型规则(Typing Rules),α 必须存在一个类型宇宙中,因此 有 α type。
析:通过分析定义上相等(Definitional Equality)规则,及赋型规则(Typing Rules),可以得到上述推论。
析:由 归纳类型(Inductive Type)的类型构建规则(Type Formation Rule)的唯一性可以得出。
析:同上,也就是,只有 c:α 符合作为归纳类型的构建函数时,才能是K的一部分,因此,α 是 构建函数的类型。
析:通过,归纳(induct on)所有的归纳类型的赋型规则(Typing Rules),可以得出,构建函数的类型。
二、弱化(Weakening)
析: Γ 已具备足够信息,用以推导后续结论,因此,再增加额外的假设,并不会改变原结论。
析:见原文。
三、替换属性(Properties of Substitution)
析:见原文。
四、规律性 续(Regularity continued)
析:见原文。