摘自:《算法竞赛入门经典-训练指南》-刘汝佳
题意:
有K只麻球,每只生存一天就会死亡,每只麻球在死之前有可能生下一些麻球,生i个麻球的概率是pi,问m天后所有的麻球都死亡的概率是多少?思路:
涉及到全概率公式,因为麻球的各种活动都互不影响,所以现在只考虑一直麻球,我们假设f[i]是第i天全部都死亡的概率,那么f[i] = p0 + p1*f[i-1] + p2*f[i-1]^2 + ...pn-1*f[i - 1]^(n-1),其中pjf(i-1)^j的含义是这个麻球生了j个后代,他们在i-1天后全部死亡,注意这j个后代的死亡是独立的,而每个死亡的概率都是f(i-1)^j也就是用前一天的全部死亡概率来代替今天的每一只死亡的概率,又因为今天的每只的生死概率什么的都是独立的,所以p2*f[i-1]^2可以理解成剩下2只,然后两只都死了,这样最后在第m天死光的概率就是f[m],但是这个只是一只麻球的,所有麻球都死光是f[m]^k。
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <cmath>
#define maxn 1010
using namespace std;
int n,k,m;
double p[maxn],f[maxn];
int main(){
int T;
int i,j,k;
scanf("%d",&T);
for(int cas=1;cas<=T;cas++){
scanf("%d%d%d",&n,&k,&m);
for(i=0;i<n;i++)scanf("%lf",&p[i]);
f[0]=0;
f[1]=p[0];
for(i=2;i<=m;i++){
f[i]=0;
for(int j=0;j<n;j++){
f[i]+=p[j]*pow(f[i-1],j);
}
}
printf("Case #%d: %.7lf\n",cas,pow(f[m],k));
}
return 0;
}