【剑指offer-46】孩子们的游戏(圆圈中最后剩下的数)
- 考点:链表 数字
- 时间限制:1秒
- 空间限制:32768K
- 每年六一儿童节,牛客都会准备一些小礼物去看望孤儿院的小朋友,今年亦是如此。HF作为牛客的资深元老,自然也准备了一些小游戏。其中,有个游戏是这样的:首先,让小朋友们围成一个大圈。然后,他随机指定一个数m,让编号为0的小朋友开始报数。每次喊到m-1的那个小朋友要出列唱首歌,然后可以在礼品箱中任意的挑选礼物,并且不再回到圈中,从他的下一个小朋友开始,继续0…m-1报数…这样下去…直到剩下最后一个小朋友,可以不用表演,并且拿到牛客名贵的“名侦探柯南”典藏版(名额有限哦!!_)。请你试着想下,哪个小朋友会得到这份礼品呢?(注:小朋友的编号是从0到n-1)
如果没有小朋友,请返回-1
思路:
这个就是约瑟夫环。
这个思路比较简单,就是创建一个n大小的数组,i是指针,count记录还有几个小朋友没有退出,step是现在报数的个数。
开始报数,如果超过整个换的范围,那么指针要指回头部。
如果这个小朋友退出了,那么跳过这个循环不报数。
开始报数,如果报数等于m了,那么这个小朋友要退出,数组值设置为-1,重新报数step等于0,count–。继续走循环。
当所有人都退出之后,最后一个退出的就是指针i,这个人就是小朋友之中的赢家。
代码:
public class Solution {
public int LastRemaining_Solution(int n, int m) {
if (n < 1 || m < 1) {
return -1;
}
int a[] = new int [n];
int step = 0, count = n, i = -1;
while (count > 0) {
i++;
// 如果超出整个环的范围,那么回到原点
if (i == n) {
i = 0;
}
// 如果这个小朋友已经退出了
if (a[i] == -1) {
continue;
}
step++; // 报数
if (step == m) {
a[i] = -1; // 小朋友退出
step = 0;
count--;
}
}
return i;
}
}
我的问题:
注意顺序!!指针先移动,判断如果超出了环的范围,那么指针移动回到原点。
然后判断这个小朋友是不是已经退出了。
没有退出才进行报数,一定要注意这个顺序!!!
其他思路1:
定义一个关于m 和n的方程,f(n,m),表示n个数字0,1,2,….n-1;
中每次删除第m个数字最后剩下的数字。
第一个被删除的数字(m-1)%n.
例如0,1,2,3,4,5,删除第3个,即2,那么(3-1)%6=0….2,商0余2,所以2就是那个被删除的数。
在删除第m个数字(定义为k)之后的序列为
0,1,2,…k-1,k+1,…n-1;
在进入下一次循环时删除第m个的时候从第k+1个数开始,这个序列为k+1,,,n-1,0,1,…k-1;函数因此定为f*(n-1,m)
再将这个映射我从0开始的序列,如下:
K+1 → 0;
K+2 → 1;
…
n-1 → n-1-(k+1)=n-k-2;
0 → n-k-2+1=n-k-1;
1 → n-k;
…
k-1 → n-k-1+(k-1)=n-2;
映射p(x)=p(x-k-1)%n;表示映射前的数字是x,映射后的数字是x-k-1。逆映射为
P*(x)=(x+k+1)%n.
这里记住无论循环多少次删除第m个元素最后剩下的数字是一样的。
有f*(n-1,m)=P*( f(n-1,m))=( f(n-1,m)+k+1)%n.=(f(n-1,m)+m)%n.
因为k=(m-1)%n=(m-1)
递推公式
让f[i]为i个人玩游戏报m退出最后的胜利者的编号,最后的结果自然是f[n]
服了
f[1] = 0;
f[i] = (f[i - 1] + m) mod i;
public class Solution {
public int LastRemaining_Solution(int n, int m) {
if (n < 1 || m < 1) {
return -1;
}
int last = 0;
for (int i = 2; i <= n; i++) {
last = (last + m) % i;
}
return last;
}
}