【剑指offer-63】数据流中的中位数
- 考点:进制转化
- 时间限制:1秒
- 空间限制:32768K
- 如何得到一个数据流中的中位数?如果从数据流中读出奇数个数值,那么中位数就是所有数值排序之后位于中间的数值。如果从数据流中读出偶数个数值,那么中位数就是所有数值排序之后中间两个数的平均值。我们使用Insert()方法读取数据流,使用GetMedian()方法获取当前读取数据的中位数。
思路:
Java的PriorityQueue 是从JDK1.5开始提供的新的数据结构接口,默认内部是自然排序,结果为小顶堆,也可以自定义排序器,比如下面反转比较,完成大顶堆。
思路:
为了保证插入新数据和取中位数的时间效率都高效,这里使用大顶堆+小顶堆的容器,并且满足:
1、两个堆中的数据数目差不能超过1,这样可以使中位数只会出现在两个堆的交接处;
2、大顶堆的所有数据都小于小顶堆,这样就满足了排序要求。
先用java集合PriorityQueue来设置一个小顶堆和大顶堆
主要的思想是:因为要求的是中位数,那么这两个堆,大顶堆用来存较小的数,从大到小排列;
小顶堆存较大的数,从小到大的顺序排序,显然中位数就是大顶堆的根节点与小顶堆的根节点和的平均数。
⭐保证:小顶堆中的元素都大于等于大顶堆中的元素,所以每次塞值,并不是直接塞进去,而是从另一个堆中poll出一个最大(最小)的塞值
⭐当数目为偶数的时候,将这个值插入大顶堆中,再将大顶堆中根节点(即最大值)插入到小顶堆中;
⭐当数目为奇数的时候,将这个值插入小顶堆中,再讲小顶堆中根节点(即最小值)插入到大顶堆中;
⭐取中位数的时候,如果当前个数为偶数,显然是取小顶堆和大顶堆根结点的平均值;如果当前个数为奇数,显然是取小顶堆的根节点
理解了上面所述的主体思想,下面举个例子辅助验证一下。
例如,传入的数据为:[5,2,3,4,1,6,7,0,8],那么按照要求,输出是"5.00 3.50 3.00 3.50 3.00 3.50 4.00 3.50 4.00 "
那么整个程序的执行流程应该是(用min表示小顶堆,max表示大顶堆):
5先进入大顶堆,然后将大顶堆中最大值放入小顶堆中,此时min=[5],max=[无],avg=[5.00]
2先进入小顶堆,然后将小顶堆中最小值放入大顶堆中,此时min=[5],max=[2],avg=[(5+2)/2]=[3.50]
3先进入大顶堆,然后将大顶堆中最大值放入小顶堆中,此时min=[3,5],max=[2],avg=[3.00]
4先进入小顶堆,然后将小顶堆中最小值放入大顶堆中,此时min=[4,5],max=[3,2],avg=[(4+3)/2]=[3.50]
1先进入大顶堆,然后将大顶堆中最大值放入小顶堆中,此时min=[3,4,5],max=[2,1],avg=[3/00]
6先进入小顶堆,然后将小顶堆中最小值放入大顶堆中,此时min=[4,5,6],max=[3,2,1],avg=[(4+3)/2]=[3.50]
7先进入大顶堆,然后将大顶堆中最大值放入小顶堆中,此时min=[4,5,6,7],max=[3,2,1],avg=[4]=[4.00]
0先进入小顶堆,然后将小顶堆中最大值放入小顶堆中,此时min=[4,5,6,7],max=[3,2,1,0],avg=[(4+3)/2]=[3.50]
8先进入大顶堆,然后将大顶堆中最小值放入大顶堆中,此时min=[4,5,6,7,8],max=[3,2,1,0],avg=[4.00]
代码:
import java.util.PriorityQueue;
import java.util.Comparator;
public class Solution {
// 小顶堆
private PriorityQueue<Integer> minHeap = new PriorityQueue();
private PriorityQueue<Integer> maxHeap = new PriorityQueue(15, new Comparator<Integer>() {
public int compare(Integer o1, Integer o2) {
return o2 - o1;
}
});
//记录偶数个还是奇数个
int count = 0;
//每次插入小顶堆的是当前大顶堆中最大的数
//每次插入大顶堆的是当前小顶堆中最小的数
//这样保证小顶堆中的数永远大于等于大顶堆中的数
//中位数就可以方便地从两者的根结点中获取了
public void Insert(Integer num) {
//个数为偶数的话,则先插入到大顶堆,然后将大顶堆中最大的数插入小顶堆中
if (count % 2 == 0) {
maxHeap.offer(num);
int max = maxHeap.poll();
minHeap.offer(max);
} else {
//个数为偶数的话,则先插入到大顶堆,然后将大顶堆中最大的数插入小顶堆中
minHeap.offer(num);
int min = minHeap.poll();
maxHeap.offer(min);
}
count++;
}
public Double GetMedian() {
if (count % 2 == 0) {
//当前为偶数个,则取小顶堆和大顶堆的堆顶元素求平均
return new Double(minHeap.peek() + maxHeap.peek()) / 2;
} else {
//当前为奇数个,则直接从小顶堆中取元素即可
return new Double(minHeap.peek());
}
}
}