学术研究ing
文章平均质量分 94
嘘 先不告诉你
sinat_38007523
这个作者很懒,什么都没留下…
展开
-
[CIKM 2023] 基于会话推荐的双通道多稀疏图注意网络
摘要基于会话的推荐(SBR)最近受到了极大的关注,因为它能够提供个性化的建议的基础上的匿名会话用户的交互序列。SBR面临的挑战主要包括如何利用当前会话以外的信息,以及如何减少会话数据中无关信息对预测的负面影响。为了解决这些挑战,我们提出了一种新的基于图注意力网络的模型,称为多稀疏图注意力网络(MSGAT)。MSGAT利用两个并行通道对会话内和会话间信息进行建模。在会话内通道中,我们利用门控图神经网络执行初始编码,然后通过自注意机制生成目标表示。然后基于目标表示对全局表示进行降噪。原创 2023-12-08 16:54:20 · 1233 阅读 · 0 评论 -
[TIFS 2023] 用增强压缩感知做安全模型对比联邦学习
为了解决这些问题,在本文中,我们提出了一个安全的模型对比联邦学习与改进的压缩感知(MCFL-CS)计划,对比学习的动机。此外,我们进行了广泛的实验,使用五个基准数据集下的非IID设置,以证明我们的计划大大优于其他国家的最先进的FL方法在模型的准确性,通信成本,本地时代的数量,可扩展性,异构性和隐私预算。我们基于我们设计的局部网络结构、改进的压缩感知方法和局部差分隐私[7],提出了一种安全、高效、高精度的隐私保护FL框架,不仅保护了所有客户端的隐私,而且提高了非IID设置下的模型精度,大大降低了通信开销。原创 2023-07-07 09:45:18 · 570 阅读 · 0 评论