分析数据之雷达图

本文介绍了如何利用雷达图进行数据分析,重点讲述了雷达图的绘制步骤,包括确定特征数量、获取每个特征的数据以及具体绘图过程。代码示例中强调了必须在绘制完成后设置标题和坐标轴显示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

结果图:

步骤分析如图:

极轴就是极坐标系的开始位置,代码中的angles就是极轴转出来的角度

1、明确有几个特征,将圆平均切分

2、每个特征的数据

3、绘图

代码:

import matplotlib.pyplot as plt
import numpy as np

#字体设置
plt.rcParams['font.sans-serif'] = 'SimHei'
plt.rcParams['axes.unicode_minus']=False

#绘图
plt.figure()
dataLength = 5 # 将圆分为5份

angles = np.linspace(0,2*np.pi,dataLength,endpoint=False)#endpoint=False最后一个点2π不取

labels = ['生存','输出','团战','KDA','发育']
data=[2,3.5,4,4.5,5] @生存能力2  输出3.5 团战 4,KDA4.5  发育 5
data = np.concatenate((da
### 使用 Python 进行数据分析并创建雷达 #### 推荐使用的库 对于绘制雷达,`matplotlib` 是最常用的选择之一[^1]。然而,在追求更高级的功能如交互性和美观度时,可以考虑 `plotly` 库[^2]。 #### 创建静态雷达示例 (基于 Matplotlib) 下面是一个简单的例子来展示如何利用 `matplotlib` 绘制基本的雷达: ```python import numpy as np import matplotlib.pyplot as plt from math import pi # 设置数据集 categories=['A','B','C','D'] values=[3,7,6,4] N = len(categories) angles=[n / float(N) * 2 * pi for n in range(N)] values+=values[:1] angles+=angles[:1] ax = plt.subplot(polar=True) plt.xticks(angles[:-1], categories) ax.plot(angles, values) ax.fill(angles, values, 'b', alpha=0.1) plt.show() ``` 这段代码展示了如何通过给定的一组类别及其对应的数值构建一个基础版本的雷达,并填充颜色以增强视觉效果。 #### 创建动态雷达示例 (基于 Plotly) 如果希望得到更加互动性的表,则可以选择 `plotly` 来实现这一目标: ```python import plotly.graph_objects as go import pandas as pd df = pd.DataFrame(dict( r=[1, 5, 2, 2, 3], theta=['processing cost','mechanical properties', 'chemical stability', 'thermal stability', 'device integration'])) fig = go.Figure() fig.add_trace(go.Scatterpolar( r=df['r'], theta=df['theta'], fill='toself' )) fig.update_layout( polar=dict( radialaxis=dict( visible=True, range=[0, 5] )), showlegend=False ) fig.show() ``` 此段脚本说明了怎样借助于 `plotly` 的强大功能制作带有动画过渡效果以及良好用户体验界面下的雷达
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值