异常检测论文解读|QuoVadisTAD:无监督时序异常检测未来的方向

文章标题:Position: Quo Vadis, Unsupervised Time Series Anomaly Detection?

文章地址:https://arxiv.org/abs/2405.02678

代码地址:https://github.com/ssarfraz/QuoVadisTAD

“Quo Vadis” 是拉丁语,直译为“你往何处去?”。

一、论文简介

批判性地分析了深度学习模型设计的不足,通过将复杂的深度学习模型线性化,证明即使简化后的模型也能保持相似的性能。呼吁TAD领域需要新的、更丰富的数据集,改进评价指标,对复杂模型保持谨慎态度,关注简单和可解释的方法。

主要贡献:

  • 引入了简单有效的基线,并证明它们的性能与SOTA方法相当或更好,从而挑战了增加模型复杂性来解决TAD问题的效率和有效性。

  • 通过将训练的SOTA模型简化为线性模型来加强这一立场,线性模型是它们的蒸馏,但仍然表现良好。

    因此,从当前数据集上的TAD任务的角度来看,这些模型大致上将异常与标准数据进行了线性分离。

二、论文方法

在过去提出的众多异常检测方法中,往往有一些一致的地方——它们往往为了追求新颖性而忽略了更简单的基线。为此,我们提出了一些简单的方法,这些方法的性能超过了目前发表的最好的异常检测方法。

2.1 提出的简单有效的基线
  1. Sensor range deviation(传感器距离偏差)

如果某个测试数据点的传感器值落在观测范围之外,则可能表明存在异常
在这里插入图片描述

  1. L2-norm: Magnitude of the observed time stamp(范数)

在多元时间序列数据的情况下,向量在特定时间戳的大小可以作为检测OOD样本的相关统计量。这可以很容易地通过取向量的l2范数来计算,因此 f ( x ^ t ) = ∥ x ^ t ∥ 2 f(\hat{x}_t)=\parallel \hat{x}_t \parallel_2 f(x^

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值