文章标题:Position: Quo Vadis, Unsupervised Time Series Anomaly Detection?
文章地址:https://arxiv.org/abs/2405.02678
代码地址:https://github.com/ssarfraz/QuoVadisTAD
“Quo Vadis” 是拉丁语,直译为“你往何处去?”。
一、论文简介
批判性地分析了深度学习模型设计的不足,通过将复杂的深度学习模型线性化,证明即使简化后的模型也能保持相似的性能。呼吁TAD领域需要新的、更丰富的数据集,改进评价指标,对复杂模型保持谨慎态度,关注简单和可解释的方法。
主要贡献:
-
引入了简单有效的基线,并证明它们的性能与SOTA方法相当或更好,从而挑战了增加模型复杂性来解决TAD问题的效率和有效性。
-
通过将训练的SOTA模型简化为线性模型来加强这一立场,线性模型是它们的蒸馏,但仍然表现良好。
因此,从当前数据集上的TAD任务的角度来看,这些模型大致上将异常与标准数据进行了线性分离。
二、论文方法
在过去提出的众多异常检测方法中,往往有一些一致的地方——它们往往为了追求新颖性而忽略了更简单的基线。为此,我们提出了一些简单的方法,这些方法的性能超过了目前发表的最好的异常检测方法。
2.1 提出的简单有效的基线
- Sensor range deviation(传感器距离偏差)
如果某个测试数据点的传感器值落在观测范围之外,则可能表明存在异常
- L2-norm: Magnitude of the observed time stamp(范数)
在多元时间序列数据的情况下,向量在特定时间戳的大小可以作为检测OOD样本的相关统计量。这可以很容易地通过取向量的l2范数来计算,因此 f ( x ^ t ) = ∥ x ^ t ∥ 2 f(\hat{x}_t)=\parallel \hat{x}_t \parallel_2 f(x^