论文题目:TSLANet: Rethinking Transformers for Time Series Representation Learning
论文地址:https://arxiv.org/pdf/2404.08472
代码地址:https://github.com/emadeldeen24/TSLANet/tree/main
一、论文简介
背景:
Transformer在处理那些较小数据集的任务时,由于其较大的参数大小,这可能导致过拟合和计算效率低下的问题。自注意力机制对数据的噪声也敏感,同时不能很好的保存时间信息,因此在时间序列预测方面,单个线性层的表现惊人地优于复杂的Transformer架构。但是这样的线性层可能无法处理复杂的、有噪声的时间序列。
论文从多层感知器(MLPs)和Transformer转向挖掘CNN操作在时间序列分析中的潜力。
利用CNN进行多时间序列任务的一个值得注意的尝试是TimesNet模型,该模型利用多周期性在二维空间内合并周期内和周期间的变化,增强了时间模式的表示。然而,TimesNet可能无法完全解决缺乏明确周期性的非平稳数据集所带来的挑战。
主要贡献:
1.提出一种叫时间序列轻量级自适应网络(Time Series Lightweight Adaptive
Network ,TSLANet)。包含自适应频谱块(Adaptive Spectral Block ,ASB) 和交互卷积块(Interactive Convolution Block ,ICB)两部分。
2.TSLANet在分类、预测和异常检测的任务中优于最先进的模型。
二、模型结构
论文提出的TSLANet的结构。将输入时间序列分割成patches,并添加位置嵌入。接下来,输出嵌入通过TSLANet层,其中每层由两个主要组件组成。
第一个是自适应频谱块ASB,它利用频域表示进行鲁棒特征提取,并采用自适应阈值来减轻噪声。第二个是交互式卷积块ICB,它通过卷积操作捕获复杂的时间模式。
2.1 Adaptive Spectral Block(ASB)
-
FFT
F = F [ S P E ] ∈ C C × L ′ F=\mathcal{F}[S_{PE}]\in C^{C×L^′} F=F[SPE]∈CC×L′
对时间序列的每个通道进行独立FFT变换,得到一个综合的频域表示F,它封装了原始时间序列在所有通道上的频谱特征。 -
高频噪声的自适应去除
高频分量通常代表偏离潜在趋势或信号的快速波动,使它们看起来更加随机且难以解释。因此,提出了一种自适应局部滤波器,允许模型根据数据集特征动态调整滤波水平,并去除这些高频噪声成分。在处理频谱可能随时间变化的非平稳数据时,这一点至关重要。该滤波器自适应地为每个特定的时间序列数据设置合适的频率阈值。
首先计算F的功率谱,这有助于识别主导频率成分: P = ∣ F ∣ 2 P=|F|^2 P=∣F∣2
通过一个可训练的阈值θ来实现这一点,该阈值根据数据的光谱特征进行调整。这个阈值θ被设置为一个可学习的参数
F f i l t e r e d = F ⊙ ( P > θ ) F_{filtered}=F\odot(P>θ) Ffiltered=