题目描述:
在一个果园里,小明已经将所有的水果打了下来,并按水果的不同种类分成了若干堆,小明决定把所有的水果合成一堆。每一次合并,小明可以把两堆水果合并到一起,消耗的体力等于两堆水果的重量之和。当然经过 n‐1 次合并之后,就变成一堆了。小明在合并水果时总共消耗的体力等于每次合并所耗体力之和。
假定每个水果重量都为 1,并且已知水果的种类数和每种水果的数目,你的任务是设计出合并的次序方案,使小明耗费的体力最少,并输出这个最小的体力耗费值。例如有 3 种水果,数目依次为 1,2,9。可以先将 1,2 堆合并,新堆数目为3,耗费体力为 3。然后将新堆与原先的第三堆合并得到新的堆,耗费体力为 12。所以小明总共耗费体力=3+12=15,可以证明 15 为最小的体力耗费值。
输入:
每组数据输入包括两行,第一行是一个整数 n(1<=n<=10000),表示水果的种类数,如果 n 等于 0 表示输入结束,且不用处理。第二行包含 n 个整数,用空格分隔,第 i 个整数(1<=ai<=1000)是第 i 种水果的数目。
输出:
对于每组输入,输出一个整数并换行,这个值也就是最小的体力耗费值。输入数据保证这个值小于 2^31。
样例输入:
3
9 1 2
0
样例输出:
15
参考代码:
/*哈夫曼树,带权路径和最小,使用小顶堆模拟*/
#include<cstdio>
#include<queue>
#include<functional>
using namespace std;
int main() {
int n;
while (scanf("%d", &n) != EOF) {
if (n == 0) break;
priority_queue<int, vector<int>, greater<int>> q;
while (n--) {
int x;
scanf("%d", &x);
q.push(x);
}
int ans = 0;//带权路径和,可能结果超出整型
while (q.size() > 1) {
int a = q.top();
q.pop();
int b = q.top();
q.pop();
ans += a + b;
q.push(a + b);
}
printf("%d\n", ans);
}
}