程序设计与算法(二)算法基础-郭炜 6.4.1动态规划的一般思路 && 例题.最长公共子序列

递归到动规的一般转化方法
递归函数有n个参数,就定义一个n维的数组,数组的下标是递归函数参数的取值范围,数组元素的值是递归函数的返回值,这样就可以从边界值开始,逐步填充数组,相当于计算递归函数值的逆过程。
动规解题的一般思路
1.将原问题分解为子问题
·把原问题分解为若干个子问题,子问题和原问题形式相同
或类似,只不过规模变小了。子问题都解决,原问题即解决(数字三角形例)。
·子问题的解一旦求出就会被保存,所以每个子问题只需求
解一次。
2.确定状态
所有“状态”的集合,构成问题的“状态空间“。而”状态空间”的大小,与用动态规划解决问题的时间复杂度直接相关。在数字三角形的例子里,一共有N×(N+1)/2个数字,所以这个问题的状态空间里一共就有N×(N+1)/2个状态。
整个问题的时间复杂度是状态数目乘以计算每个状态所需时间。
在数字三角形里每个“状态”只需要经过一次,且在每个状态上作计算所花的时间都是和N无关的常数。
用动态规划解题,经常碰到的情况是,K个整型变量能构成一个状态(如数字三角形中的行号和列号这两个变量构成“状态”)。如果这K个整型变量的取值范围分别是N1,N2,…Nk,那么,我们就可以用一个K维的数组array[N1] [N2]…[Nk]来存储各个状态的“值”。这个“值”未必就是一个整数或浮点数,可能是需要一个结构才能表示的,那么array就可以是一个结构数组。一个“状态”下的“值”通常会是一个或多个子问题的解。
3.确定一些初始状态(边界状态)的值
以“数字三角形”为例,初始状态就是底边数字,值就是底边数字值。
4.确定状态转移方程
定义出什么是“状态”,以及在该“状态”下的“值”后,就要找出不同的状态之间如何迁移——即如何从一个或多个“值”已知的“状态”,求出另一个“状态”的“值”(“人人为我”递推型)。状态的迁移可以用递推公式表示,此递推公式也可被称作“状态转移方程”。
数字三角形的状态转移方程:
M a x S u m [ r ] [ j ] = { D [ r ] [ j ] r = N M a x ( M a x S u m [ r + 1 ] [ j ] , M a x S u m [ r + 1 ] [ j + 1 ] ) + D [ r ] [ j ] 其 他 情 况 MaxSum[r][j]=\begin{cases} D[r][j] & r = N \\ Max(MaxSum[r + 1][j],MaxSum[r + 1][j + 1]) + D[r][j] & 其他情况 \end{cases} MaxSum[r][j]={D[r][j]Max(MaxSum[r+1][j],MaxSum[r+1][j+1])+D[r][j]r=N
能用动规解决的问题的特点
1)问题具有最优子结构性质。如果问题的最优解所包含的
子问题的解也是最优的,我们就称该问题具有最优子结构性质。
2)无后效性。当前的若干个状态值一旦确定,则此后过程的演变就只和这若干个状态的值有关,和之前是采取哪种手段或经过哪条路径演变到当前的这若干个状态,没有关系。
例题二:最长上升子序列
问题描述
一个数的序列ai,当a1< a2< … < as的时候,我们称这个序列是上升的。对于给定的一个序列(a1,a2,…, aN),我们可以得到一些上升的子序列(ai1,ai2,…,aiK),这里1<= i1 <i2 < … < iK<= N。比如,对于序列(1,7,3,5,9,4,8),有它的一些上升子序列,如(1,7),(3,4,8)等等。这些子序列中最长s的长度是4,比如子序列(1,3,5,8).
你的任务,就是对于给定的序列,求出最长上升子序列的长度。
输入数据
输入的第一行是序列的长度N (1<= N<= 1000)。第二行给出序列中的N个整数,这些整数的取值范围都在0到10000。
输出要求
最长上升子序列的长度。输入样例
7
1 7 3 5 9 4 8
输出样例
4
解题思路
1.找子问题
“求序列的前n个元素的最长上升子序列的长度”是个子问题,但这样分解子问题,不具有“无后效性”
假设F(n)= x,但可能有多个序列满足F(n)= x。有的序列的最后一个元素比 an+1小,则加上an+1就能形成更长上升子序列;有的序列最后一个元素不比an+1小……以后的事情受如何达到状态n的影响,不符合“无后效性”
“求以ak(k=1,2,3…N)为终点的最长上升子序列的长度”
一个上升子序列中最右边的那个数,称为该子序列的“终点”。
虽然这个子问题和原问题形式上并不完全一样,但是只要这N个子问题都解决了,那么这N个子问题的解中,最大的那个就是整个问题的解。
2.确定状态
子问题只和一个变量–数字的位置相关。因此序列中数的位置k 就是“状态”,而状态k 对应的“值”,就是以ak做为“终点”的最长上升子序列的长度。
状态一共有N个。
3.找出状态转移方程
maxLen (k)表示以ak做为“终点”的最长上升子序列的长度那么:
初始状态:maxLen (1) = 1
maxLen (k) = max { maxLen (i): 1<=i< k 且 ai< ak且 k≠1 } + 1
若找不到这样的i,则maxLen(k)= 1

maxLen(k)的值,就是在ak左边,“终点”数值小于ak,且长度最大的那个上升子序列的长度再加1。因为ak左边任何“终点”小于ak的子序列,加上ak后就能形成一个更长的上升子序列。

#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;

const int MAXN = 1010;
int a[MAXN];
int maxLen[MAXN];
 

int main() 
{
	int N;
	cin >> N;
	for(int i = 1;i <= N;i++)
	{
		cin >> a[i];
		maxLen[i] = 1;
	}
	for(int i = 2;i <= N;i++)
	{//每次求以第i个数为终点的最长上升子序列的长度 
		for(int j = 1;j < i;j++)
		{//察看以第j个数为终点的最长上升子序列
			if(a[i] > a[j])
				maxLen[i] = max(maxLen[i],maxLen[j] + 1); 
		} 
	}
	cout << * max_element(maxLen + 1,maxLen + N + 1);
	return 0;
} 
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值