混淆矩阵,准确率,精确率,召回率,F1值,ROC/AUC曲线的理解
在机器学习中,对一个模型的学习能力好坏的评估,往往人为判断不容易直接得到结果,这时候就可以根据一些数据指标进行分析评估。对模型(分类器,学习器)的泛化能力进行评估,有衡量模型泛化能力的评价标准,被称为性能度量。性能度量反应了人物需求,在对比不同模型的能力时,使用不同的性能度量往往会导致不同的评判结果,这就意味着模型的"好坏"是相对的,什么样的模型是好的,不仅取决于算法和数据,还决定于任务需求。...
原创
2019-05-29 16:40:41 ·
10609 阅读 ·
0 评论