安装pytorch

一、安装pytorch


#  查看GPU版本
nvidia-smi

# 查看conda所有的虚拟环境
conda env list

base                     C:\Users\username\anaconda3
pytorch                 C:\Users\username\anaconda3\envs\pytorch

# 激活 base
conda activate base
# 

# 安装 pytorch 
conda install pytorch torchvision torchaudio pytorch-cuda=12.4 -c pytorch -c nvidia

(base) C:\Users\username>python
Python 3.12.4 | packaged by Anaconda, Inc. | (main, Jun 18 2024, 15:03:56) [MSC v.1929 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import torch
>>> torch.cuda.is_available()
True

在这里插入图片描述

在这里插入图片描述

二、查看 VSCode 中终端使用的 pip 环境

要查看 VSCode 中终端使用的 pip 环境,确保它正在使用你的虚拟环境,可以按照以下步骤操作:

1. 检查当前虚拟环境的 pip

在 VSCode 的终端中,你可以通过以下命令检查当前使用的 pip 是哪个环境中的:

macOS/Linux:

打开终端并运行:

which pip
Windows:

打开终端并运行:

where pip

输出的路径应该指向你项目中的 .venv 虚拟环境目录。例如:

  • Windows: 你应该看到类似于 C:\path\to\your\project\.venv\Scripts\pip.exe 的路径。
  • macOS/Linux: 你应该看到类似于 /path/to/your/project/.venv/bin/pip 的路径。

如果路径显示的是虚拟环境中的 pip,则表示你当前在 VSCode 终端中使用的是虚拟环境中的 pip

2. 查看 pip 安装的包

你还可以运行以下命令来查看当前环境中安装的所有包,这样也可以验证你是否在虚拟环境中操作:

pip freeze

该命令会列出虚拟环境中所有已安装的 Python 包及其版本。如果你在虚拟环境中,它应该只列出虚拟环境中的包,而不是全局环境中的包。

3. 检查 Python 解释器路径

有时 pip 环境与 Python 解释器紧密相关,因此你可以通过检查 Python 解释器的路径来进一步确认是否正在使用虚拟环境。

在 VSCode 中打开命令面板(Ctrl + Shift + P),然后选择 Python: Select Interpreter。确保选择的是 .venv 文件夹中的 Python 解释器。如果正确选择了虚拟环境,它应该显示为类似 ./.venv/bin/python./.venv/Scripts/python(Windows)等路径。

你还可以在 VSCode 的终端中运行以下命令来确认当前使用的 Python 解释器路径:

macOS/Linux:
which python
Windows:
where python

如果输出路径指向你的虚拟环境,那么说明你的 pip 和 Python 都在虚拟环境中运行。

4. 确保虚拟环境已激活

在 VSCode 的终端中,虚拟环境应该自动激活,并且你通常会在命令行提示符看到虚拟环境的名称。例如,在终端中你可能会看到 (venv),这表示虚拟环境已激活。

如果虚拟环境没有自动激活,你可以手动激活它:

  • Windows:

    .\.venv\Scripts\activate
    
  • macOS/Linux:

    source .venv/bin/activate
    

然后你可以再次运行 pip 相关命令来验证是否切换到虚拟环境。

5. 检查 VSCode 设置

VSCode 可以在项目中自动检测和激活虚拟环境。确保你已经为该项目选择了正确的 Python 解释器(即 .venv 中的解释器):

  1. Ctrl + Shift + P 打开命令面板。
  2. 输入并选择 Python: Select Interpreter
  3. 选择与你的虚拟环境相关的解释器,通常是路径中包含 .venv 的那一个。

总结

要查看 VSCode 中终端的 pip 环境,检查以下内容:

  1. 使用 which pip(macOS/Linux)或 where pip(Windows)查看 pip 的路径。
  2. 使用 pip freeze 查看当前环境中安装的包。
  3. 使用 which pythonwhere python 查看正在使用的 Python 解释器路径。
  4. 确保你选择了正确的虚拟环境解释器,并且虚拟环境在 VSCode 中被激活。

通过这些方法,可以确保在 VSCode 中的终端使用的是正确的虚拟环境,并且 pip 命令也在该虚拟环境中执行。

三、查询已安装的 numpy 版本并升级到最新版本

查询已安装的 numpy 版本并升级到最新版本,你可以按照以下步骤操作:

  • 使用 pip show numpy 查询当前安装的版本。
  • 使用 pip install --upgrade numpy 升级到最新版本。
  • 使用 pip show numpy 再次确认升级后的版本。

1. 查询已安装的 numpy 版本

打开 VSCode 终端并运行以下命令来查看当前安装的 numpy 版本:

pip show numpy

该命令会显示 numpy 包的详细信息,包括版本号。输出示例如下:

Name: numpy
Version: 1.21.0
Summary: NumPy is the fundamental package for array computing with Python.
Home-page: http://www.numpy.org
Author: Travis E. Oliphant
Author-email: olethros@enthought.com
License: BSD
Location: /path/to/your/project/.venv/lib/python3.8/site-packages
Requires: 
Required-by: 

在这个输出中,Version: 1.21.0 表示当前安装的 numpy 版本。

2. 升级 numpy 到最新版本

要将 numpy 升级到最新版本,你可以运行以下命令:

pip install --upgrade numpy

这个命令会从 PyPI (Python 包索引)下载并安装 numpy 的最新版本。如果你当前的版本已经是最新的,命令将不会做任何更改。

3. 确认升级后的版本

升级完成后,再次运行 pip show numpy 来确认 numpy 是否已成功升级到最新版本:

pip show numpy

你应该看到更新后的版本号。例如:

Version: 1.24.0

四、卸载当前安装的 numpy 并安装指定版本

要卸载当前安装的 numpy 并安装指定版本(例如 1.26.4),可以按照以下步骤操作:

  • 卸载 numpy:使用 pip uninstall numpy
  • 安装指定版本:使用 pip install numpy==1.26.4
  • 确认安装版本:使用 pip show numpy

1. 卸载当前的 numpy

在终端中运行以下命令来卸载当前版本的 numpy

pip uninstall numpy

运行后,系统会提示确认是否卸载。你需要输入 y 来确认卸载:

Proceed (y/n)? y

2. 安装指定版本的 numpy (1.26.4)

卸载完成后,使用以下命令安装指定版本的 numpy,比如 1.26.4

pip install numpy==1.26.4

这会从 PyPI 下载并安装 numpy 版本 1.26.4

3. 确认安装的版本

安装完成后,可以运行以下命令来确认安装的 numpy 版本:

pip show numpy

你应该会看到类似如下的输出,表明你已成功安装了 numpy 版本 1.26.4:

Name: numpy
Version: 1.26.4
Summary: NumPy is the fundamental package for array computing with Python.
Home-page: http://www.numpy.org
Author: Travis E. Oliphant
Author-email: olethros@enthought.com
License: BSD
Location: /path/to/your/project/.venv/lib/python3.8/site-packages
Requires: 
Required-by:

五、升级所有过时的包

1. 列出所有过时的包

首先,列出所有过时的包,不使用 --format=freeze,而是直接列出包名和版本信息:

pip list --outdated

这会列出所有有可用更新的包及其当前版本和最新版本。

2. 升级所有过时的包

然后,你可以使用以下命令升级所有过时的包:

macOS/Linux
pip list  --format=freeze | cut -d = -f 1 | xargs -n 1 pip install -U

这个命令的流程:

  • pip list --format=freeze 会列出所有过时包的名称和版本。
  • cut -d = -f 1 会从输出中提取出包的名称。
  • xargs -n 1 pip install -U 会对每个过时包执行 pip install --upgrade
Windows PowerShell

在 Windows PowerShell 中,可以使用以下命令升级过时的包:

pip list --format=freeze | ForEach-Object { pip install --upgrade ($_.Split('=')[0]) }

这个命令的流程:

  • pip list --format=freeze 会列出所有过时包的名称和版本。
  • ForEach-Object { pip install --upgrade ($_.Split('=')[0]) } 会对每个过时包执行 pip install --upgrade
### PyTorch 安装教程 #### 创建并激活 Conda 虚拟环境 为了确保最佳兼容性和隔离开发环境,在安装 PyTorch 前建议先通过 Anaconda 创建一个新的 Python 环境。这可以通过命令行工具完成: ```bash conda create --name pytorch_env python=3.9 conda activate pytorch_env ``` #### 获取适用于系统的 PyTorch 配置指令 访问官方推荐页面来获取适合特定硬件配置(CPU/GPU)、操作系统以及 CUDA 版本安装命令[^1]。 对于大多数用户而言,默认选项通常是最优选择;但对于拥有 NVIDIA 显卡并希望利用 GPU 加速计算能力的情况,则应特别注意匹配正确的 CUDA/ cuDNN 版本。 #### 使用 conda 安装 PyTorch 及其依赖项 一旦决定了具体的安装参数,就可以执行相应的 `conda install` 或者 `pip install` 指令来进行软件包部署。这里以 conda 方式为例说明如何一次性安装 PyTorch、torchvision 和 torchaudio 这三个核心组件: ```bash conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch ``` 请注意上述命令中的 `cudatoolkit=11.3` 参数需依据个人计算机上的实际 CUDA 版本来调整。 #### 验证 PyTorch 是否正确安装 最后一步是在 Python 解释器内部运行简单的测试脚本来确认 PyTorch 已经被成功加载并且能够识别到可用设备(如GPU)。可以尝试如下代码片段进行验证: ```python import torch print(torch.__version__) print(torch.cuda.is_available()) ``` 如果一切正常的话,这段程序应该会打印出当前使用的 PyTorch 版本号,并返回 True 表明存在可工作的 CUDA 设备支持[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值