【C2C+GRCC】Exploring Disentangled Content Information for Face Forgery Detection

Exploring Disentangled Content Information for Face Forgery Detection

会议/期刊: ECCV 2022
作者:
在这里插入图片描述

背景

CNN好用,但是性能难维持。

key points

比起伪影更关注于内容信息
表明检测器对数据集的内在偏差很敏感,会导致严重的过拟合。

设计了一个易于嵌入的内容信息去除解纠缠框架,并进一步提出了内容一致性约束(c2c)和全局表示对比约束(GRCC)来增强解纠缠特征的独立性。

构建了两个不平衡的数据集。【研究内容偏差】

研究

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值